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Abstract
The number of antifungal classes is small, and resistance 
is becoming a much more frequent problem. Much 
greater emphasis needs to be placed on susceptibility 
testing and antifungal stewardship. Such efforts 
demonstrably improve survival and overall clinical 
outcomes. Positively diagnosing a fungal infection with 
laboratory markers often allows antibacterial therapy 
to be stopped (ie, anti-tuberculous therapy in chronic 
pulmonary aspergillosis or antibiotics other than 
cotrimoxazole in Pneumocystis pneumonia), contributing 
to antimicrobial resistance control generally. Non-culture 
based diagnostics for fungal disease are transformational 
in terms of sensitivity and speed, but only occasionally 
identify antifungal resistance.

Systemic antifungal therapy is crucial for survival 
and reduction in morbidity of a wide range of fungal 
infections — some invasive (ie, invasive aspergil-
losis and candidaemia), some chronic (ie, chronic 
pulmonary aspergillosis and mycetoma), some 
allergic (ie, fungal asthma) and a very large number 
that are superficial (ie, oral or vaginal candidiasis, 
tinea capitis or corporis (ringworm)). The current 
systemic antifungal drugs included on the WHO 
Essential Medicines List are shown in table 1.1

Antifungal resistance may be intrinsic or 
acquired.2 Genus or species identification often 
reveals intrinsic resistance such as fluconazole resis-
tance in Candida krusei, amphotericin B resistance 
in Aspergillus terreus or echinocandin resistance in 
Cryptococcus species. A tendency for higher rates of 
acquired resistance is also revealed by species iden-
tification, such as fluconazole resistance in Candida 
glabrata or azole resistance in Aspergillus fumigatus. 
So fungal identification is critical to good treatment 
decisions. A guideline on the therapy of rare mould 
infections has recently been published by the Euro-
pean Confederation of Medical Mycology which 
addressed therapy for intrinsically resistant mould 
fungi.3

However, the majority of antifungal resistance 
problems are acquired, meaning that the majority 
of strains from that species are susceptible, but 
some are not and have acquired resistance. The 
mechanisms of acquired resistance are many, and 
research continues to uncover more; many are 
combinations of changes leading to resistance. For 
azole resistance in Candida, the most common 
mechanisms are efflux (ie, increased export of drug 
from inside the fungal cell to the exterior), with less 
common causes related to chromosomal (or part 
chromosomal) duplication or target site mutation.4 
In A. fumigatus, the most common cause is target 
site mutation, often combined with increased copy 
number of the target gene (CYP51A).5 Occasional 

strains of A. fumigatus have increased efflux of 
azoles, additional copies of a CYP51B protein and 
several other mechanisms conferring resistance. In 
Cryptococcus neoformans, chromosomal deletions 
(aneuploidy or disomy) account for most fluco-
nazole resistance.6 7 Different mechanisms account 
for amphotericin B, flucytosine, echinocandin and 
terbinafine resistance.

Resistance in dermatophytes
Tinea capitis, cruris, corporis and pedis are common 
infections across the world, affecting  ~1 billion 
people. They are caused by a variety of filamentous 
fungi including Trichophyton, Microsporum and 
Epidermophyton species. Tinea capitis is especially 
common in children in Africa, affecting an esti-
mated 138 million.8 Microsporum canis infections 
are more difficult to treat and are refractory to 
terbinafine.9

In recent years, increasing resistance to terbin-
afine in Trichophyton interdigitale is increasingly 
recognised, especially in India. Multiple strains of 
T. interdigitale causing tinea corporis or tinea cruris 
are terbinafine resistant. For example, Khurana and 
colleagues analysed 64 strains from patients and 39 
(61%) had elevated minimum inhibitory concen-
trations (MICs) to terbinafine (MIC  >1 mg/L).10 
The European Committee on Antimicrobial 
Susceptibility Testing Antifungal Susceptibility 
Testing Subcommittee (EUCAST AFST) has deter-
mined an epidemiological MIC cut-off (ECOFF) 
of 0.125 mg/L for T. interdigitale and 0.03 mg/L 
for Trichophyton rubrum.11 Common substitutions 
found in the target gene squalene epoxidase (ErgA) 
were usually associated with MICs of  >32 mg/L, 
with others at 4 and 8 mg/L. All isolates were resis-
tant to fluconazole in vitro but fortunately almost 
all are susceptible to itraconazole. Higher doses of 
itraconazole (ie, 400 mg daily) give response rates 
of  ~65%. The recent emergence of resistance is 
notionally attributed to over the counter medica-
tion, incomplete courses of therapy and combined 
steroid, antifungal and antibacterial creams with 
incomplete coverage and low exposures.12 The 
spread of resistance to other countries is docu-
mented. This resistant grouping of dermatophytes 
have been renamed as Trichophyton indotineae.13

Susceptibility testing of dermatophyte fungi 
is not usually done in Europe, but is now neces-
sary in patients who are unresponsive to terbina-
fine. Multicentre validated methodology studies 
have been conducted by the EUCAST group.14 
National surveillance for dermatophyte resistance 
is required in countries with extensive links to the 
Indian subcontinent, probably using a sentinel site 
approach, preferably including clinical outcome 
data.
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Triazole resistance in Aspergillus fumigatus
A. fumigatus is the most common cause globally of inva-
sive, chronic and allergic aspergillosis, collectively 
affecting ~10 million people. The only oral class of antifungal 
agents active against Aspergillus species is the triazole group—
itraconazole and voriconazole (both WHO Essential Medi-
cines) and posaconazole and isavuconazole. In 2007, alarming 
reports from Manchester and Nijmegen described increasing 
azole resistance in A. fumigatus.15 Broadly, two circumstances 
led to the growing resistance problem. First, in the environment 
strains highly resistant to azole and triazoles emerged rapidly 
as a consequence of the widespread use of azole fungicides 
(about 1/3 of all fungicide use). Such strains are characterised by 
two principal genetic signatures (TR34/L98H and TR46/Y121F/
T289A).5 16 Second, in patients on long-term therapy, strains 
acquire a variety of resistance mechanisms including target site 
mutations, increased target copy number, efflux and other mech-
anisms still being described.17 18 Most isolates that are resistant 
are resistant to at least two triazoles and most are pan-azole 
resistant. Resistance has been seen in every continent except 
Antarctica. Resistant rates in Europe vary from ~1–20%, with 
higher rates in northern Europe.19 In Yunnan province in China, 
cultures from greenhouses found ~80% of A. fumigatus resistant 
to at least one medical triazole drug, with >30% showing cross-
resistance to both itraconazole and voriconazole.20 In southern 
Vietnam, azole resistance rates in A. fumigatus are about 90%.21 
Strains of Aspergillus flavus may also be azole resistant, with a 
recent report from Vietnam finding  ~50% of environmental 
strains to be multi-azole resistant and 85% resistant to itracon-
azole.22 These were linked to aquaculture, a new association.

Susceptibility testing of Aspergillus species is now well estab-
lished and available in most developed countries. Aspergillus niger 
strains are always resistant to itraconazole and isavuconazole, and 
Aspergillus terreus and nidulans to amphotericin B. It is generally 
recommended to susceptibility test all strains grown in patients 
taking antifungal therapy (not including fluconazole), as resis-
tance is suggested by a positive culture on therapy, and preferably 
all strains in whom therapy is planned, whether from invasive, 

chronic or allergic aspergillosis.23 While susceptibility testing can 
be slow, direct PCR detection of resistance is possible, particu-
larly for the mutations found in the environment.24–26 These 
data can all be part of antifungal stewardship which needs more 
emphasis in hospital practice. It would be helpful if the antifungal 
resistance programme run by the WHO Global Antimicrobial 
Resistance Surveillance System (GLASS) included surveillance for 
itraconazole and voriconazole resistance in Aspergillus.27

Patients with triazole resistance fail therapy.17 A recent cohort 
study showed that the mortality in voriconazole-resistant inva-
sive aspergillosis was 20–30% higher than in patients with 
voriconazole-susceptible disease,16 indicating that the major 
advances in survival of patients through azole-based therapy are 
completely lost in resistant cases.

Alternative treatments for pan-azole resistance are all intra-
venous—amphotericin B and either micafungin or caspofungin 
(no data for anidulafungin). These agents are 15–20% less 
effective than azoles for invasive aspergillosis and are trouble-
some to administer long term. Some data are published on long 
term usage for chronic pulmonary aspergillosis.28 29 There are 
several new agents in clinical development for aspergillosis that 
may address this problem, including rezafungin (once weekly 
IV),30 ibrexafungerp (oral),31 olorofim (IV and oral)32 and 
fosmanogepix (IV and oral).33

To help retain the medically important azoles, reduction of 
usage of these triazole fungicides in the environment is required.18 
This could be a voluntary withdrawal from some or all fungicide 
market segments. New antifungal drugs with novel chemistries 
and modes of action in clinical development and/or commercially 
launched after regulatory approval should never be used as fungi-
cides in agriculture. The authorisation procedure for new fungi-
cides should include testing for activity against non-target fungi 
such as A. fumigatus, that are known to cause infections in humans.

Multi-drug resistant Candida glabrata and 
Candida auris
The optimal therapy of invasive candidiasis and candidaemia 
relies on an intravenous echinocandin (caspofungin, micafungin 

Table 1  Essential antifungal agents as assessed by the WHO. Access and antifungal price by country is visible here: https://wwwgaffiorg/
antifungal-drug-maps/. 

Antifungal Route(s) Primary indications Resistance concerns

Griseofulvin Oral Tinea corporis and capitis Some clinical resistance described

Fluconazole Oral, IV Mucosal candidiasis, prophylaxis in leukaemia, HSCT and 
intensive care, treatment and maintenance therapy for 
cryptococosis

All moulds, including Aspergillus resistant. Lower response rates for 
endemic mycoses such as histoplasmosis. All Candida auris and Candida 
krusei strains resistant—some other species less susceptible or resistant

Amphotericin B IV and 
topical

Invasive candidiasis and cryptococcal meningitis, endemic 
fungal infections. Empiric therapy in febrile neutropenia. 
Lower response rate for invasive aspergillosis than azoles

Aspergillus terreus and nidulans resistant. Some strains of Candida auris 
resistant. Several intrinsically resistant fungi

Flucytosine Oral, IV* Cryptococcal meningitis, neonatal candidiasis and Candida 
endocarditis and endophthalmitis, other rare fungal 
infections

Low levels of resistance in Candida and Cryptococcus. Aspergilli and 
most moulds and endemic fungi resistant

Itraconazole Oral, IV* All skin infections, all forms of aspergillosis, endemic fungal 
infections, mucosal candidiasis, prophylaxis in leukaemia

Rising problems with resistance in Aspergillus fumigatus, flavus and niger. 
Some cross resistance with fluconazole in Candida

Voriconazole Oral, IV Invasive and chronic aspergillosis, some rare moulds Some azole cross resistance in Aspergillus. Mucorales intrinsically resistant

Natamycin 5% Topical, 
eye

Fungal keratitis Most effective agent, but some rarer fungi resistant, probably

Echinocandins 
(micafungin, caspofungin, 
anidulafungin)

IV Candidaemia, invasive candiasis, invasive and chronic 
pulmonary aspergillosis, prophylaxis

Most effective agent for most Candida infections, notably the majority of 
Candida auris strains. Less effective than azoles for aspergillosis. 

*Many countries only have oral
HSCT, haematopoetic stem cell transplant; ; IV, intravenous.
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and andiulafungin) with the exception of a less susceptible 
or resistance species such as Candida parapsilosis complex, 
Candida guilliermondii (rare) and Candida famata (rare). In 
these cases amphotericin B or fluconazole are used, occasion-
ally augmented with flucytosine combination therapy. Unfor-
tunately C. glabrata is poorly responsive to fluconazole and is 
often associated with urinary tract infection (which is itself very 
common in hospitalised, catheterised patients). Echinocandin 
therapy is usually successful for systemic C. glabrata infection, 
but none of the echinocandin drugs are excreted into the urine. 
Some resistance to fluconazole is reported in Candida albicans, 
Candida tropicalis and C. parapsilosis, but this is not addressed 
here in detail.

What has emerged in the last 5 years has been multi-drug resis-
tance in C. glabrata and global spread of Candida auris. In the 
2015 Asia study of candidaemia, C. glabrata was the causative 
species in 14% of cases,34 and in a later study of intensive care 
unit candidaemia in India (n=918 strains), C. auris caused 8.2% 
and C. glabrata 7.1%.35 Multi-drug resistant (MDR) Candida 
species were found in 1.9%.

Increasing rates of MDR C. glabrata have been documented 
in candidaemia studies comparing rates over time. The number 
of cases is probably underestimated, as only initial blood isolates 
are included in surveillance studies. One study demonstrated 
echinocandin resistance in 21.6% of C. glabrata isolates from 
patients exposed to echinocandins for 7 days or longer.36 MDR 
C. glabrata substantially increases mortality.

Resistant C. glabrata are also a significant issue for women 
with recurrent vulvovaginal candidiasis (rVVC) as intravenous 
therapy is inappropriate for these women and many become 
untreatable. At any one time, an estimated 138 million women 
suffer from rVVC,37 and repetitive courses of local azoles (ie, 
clotrimazole) or oral fluconazole, almost certainly are directly 
linked to replacement of C. albicans with C. glabrata.

C. auris has caused outbreaks across the world and is now 
endemic in many countries including the USA (ie, New York),38 
South Africa, Colombia and India,39 40 to name a few examples. 
One outbreak occurred in a neonatal unit in Colombia.41

The vast majority of clinical strains of C. auris are resistant 
to fluconazole, and the proportion that are also echinocandin 
or amphotericin B resistant varies by study. A common mech-
anism of fluconazole resistance is one of several mutations in 
zinc-cluster transcription factor-encoding gene TAC1B which 
increases drug efflux via increased CDR1 expression.42 Almost 
all are susceptible to flucytosine but resistance emerges rapidly 
on therapy. A small proportion (3–10%) are pan-resistant and 
currently untreatable. Echinocandin prophylaxis is ineffective 
as it does not penetrate adequately to the skin surface where 
C. auris resides, and so breakthroughs of MDR C. auris are 
promoted by this practice.

Fluconazole resistant C. parapsilosis is also a problem and can 
cause outbreaks. One large study found widespread dissemina-
tion in South Africa,43 especially in private hospitals, and other 
outbreaks have been described in Turkey and Mexico.44 45

All blood and other sterile site cultures of Candida should 
be identified to species level and susceptibility tested. Steward-
ship programmes should focus in part on stopping unnecessary 
antifungal therapy for suspected cases of candidiasis and for 
a positive culture which is not significant (notably respiratory 
samples). The use of rapid beta 1,3-D-glucan testing can be 
useful to allow the cessation of therapy as it has a high negative 
predictive value.46

Antifungal stewardship
Several studies have convincingly shown that antifungal stew-
ardship reduces mortality in the hospitalised patient.47–52 The 
basic elements of successful stewardship are: (1) comprehensive 
knowledge and continuous reference to the best clinical guidance 
on fungal disease management; (2) a primary focus on the best 
quality care, not on cost saving, as some expensive antifungals 
are the best choice (stopping unnecessary therapy is what saves 
money); (3) clinical experience to know when to infer likely 
results if not yet available or samples cannot or were not taken. 
One important tool to assist in top quality fungal disease stew-
ardship is rapid diagnostic services, notably mycology results, 
but also imaging. Too often, turnaround time for the results 
takes days, and so empirical (and often wrong) choices need to 
be made. Another key tool is antifungal therapeutic drug moni-
toring (TDM), especially for voriconazole and itraconazole, but 
also flucytosine in neonates and patients with renal dysfunc-
tion.53 A third key tool is immediate access to drug interaction 
data—one online tool which is curated weekly provides this, and 
can be downloaded onto Android phones.54

Outpatient antifungal stewardship relies on experienced clini-
cians seeing complex patients, and not assuming that ‘any old 
clinic’ will do. If long-term antifungal therapy is started, the 
follow-up requires those patients to see experienced clinicians 
for optimal care, including TDM if appropriate.

In many situations, if a fungal disease is diagnosed then anti-
bacterial therapy can be stopped or drastically reduced.55 Good 
examples are a diagnosis of chronic pulmonary aspergillosis so 
that tuberculosis can be ruled out, Pneumocystis pneumonia 
when only cotrimoxazole is needed, candidaemia, fungal asthma 
and Aspergillus bronchitis when treatment with antifungals dras-
tically reduces exacerbations and antibacterial prescriptions.
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