

Journal of Chemotherapy

ISSN: 1120-009X (Print) 1973-9478 (Online) Journal homepage: https://www.tandfonline.com/loi/yjoc20

In Vitro Antifungal Activity of Isavuconazole against 345 Mucorales Isolates Collected at Study **Centers in Eight Countries**

P.E. Verweij, G.M. González, N.P. Wiederhold, C. Lass-Flörl, P. Warn, M. Heep, M.A. Ghannoum & J. Guinea

To cite this article: P.E. Verweij, G.M. González, N.P. Wiederhold, C. Lass-Flörl, P. Warn, M. Heep, M.A. Ghannoum & J. Guinea (2009) In Vitro Antifungal Activity of Isavuconazole against 345 Mucorales Isolates Collected at Study Centers in Eight Countries, Journal of Chemotherapy, 21:3, 272-281, DOI: 10.1179/joc.2009.21.3.272

To link to this article: <u>https://doi.org/10.1179/joc.2009.21.3.272</u>

Published online: 20 Nov 2013.

-	_
r	
ι.	
L.	Ø1
~	_

Submit your article to this journal

Article views: 83

View related articles 🗹

Citing articles: 5 View citing articles 🕑

Journal of Chemotherapy

In Vitro Antifungal Activity of Isavuconazole against 345 Mucorales Isolates Collected at Study Centers in Eight Countries

P.E. VERWEIJ¹ - G.M. GONZÁLEZ² - N.P. WIEDERHOLD³ - C. LASS-FLÖRL⁴ P. WARN⁵ - M. HEEP⁶ - M.A. GHANNOUM⁷ - J. GUINEA⁸

¹ Radboud University Nijmegen Medical Center, The Netherlands; ² Universidad Autónoma de Nuevo León, Mexico; ³ The University of Texas Health Science Center San Antonio, TX, USA; ⁴ Innsbruck Medical University, Austria; ⁵ University of Manchester, UK; ⁶ Basilea Pharmaceutica Ltd, Basle, Switzerland; ⁷ University Hospitals Case Medical Center, Cleveland, OH, USA; ⁸ Hospital General Universitario Gregorio Marañón, Spain.

Correspondence to: Dr Markus Heep, Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, PO Box CH-4005 Basel, Switzerland. Tel: +41 61 606 11 11. E-mail: markus-heep@web.de

Summary

Although mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The objective of this report was to collate data on the *in vitro* activity of isavuconazole against a collection of 345 diverse Mucorales isolates, collected and tested at eight study centers in Europe, Mexico and North America. Each study center undertook minimum inhibitory concentration (MIC) susceptibility testing of their isolates, according to EUCAST or CLSI guidelines. Across all study centers, isavuconazole exhibited MIC_{50} values of 1–4 mg/L and MIC_{90} values of 4–16 mg/L against the five genera. There were also marked differences in MIC distributions, which could be ascribed to differences in inoculum and/or endpoint. EUCAST guidelines appeared to generate modal MICs 2-fold higher than CLSI. These results confirm that isavuconazole possesses at least partial antifungal activity against Mucorales.

Key words: Isavuconazole, mucorales, mucormycoses, zygomycetes, zygomycosis, EUCAST, CLSI, MIC.

INTRODUCTION

The traditional phylum Zygomycota (the zygomycetes) includes several genera that are significant in human or animal disease. Of note are the *Absidia*, *Mucor*, *Rhizomucor* and *Rhizopus* genera contained in the order Mucorales, with *Rhizopus* spp. as the most commonly implicated causative organisms of mucormycoses (formerly zygomycoses) in humans ^{1,2}. According to widespread new proposals, the phylum Zygomycota will no longer exist and the order Mucorales will be reclassified within the subphylum Mucoromycotina ³. Mucorales are considered to be aggressive and opportunistic pathogens, mainly affecting immunocompromised patients during chemotherapy or following transplantation (particularly hematopoietic stem cell) and patients with type II diabetes mellitus. However, infection can occur occasionally in patients with no known risk factors ⁴. Mucormycosis remains relatively uncommon, lagging behind fungal infections caused by *Aspergillus* spp. and *Candida* spp., but its incidence is rising in single institutions that care for a large number of patients with cancer ^{2,5-8}. They are associated with high mortality and may occur in any body site but mostly as rhinocerebral, pulmonary, cutaneous, gastrointestinal or disseminated zygomycosis. Historically, standard pharmacotherapy has been limited to amphotericin B,^{9,10} and although liposomal formulations have improved the renal toxicity profile of this polyene drug, clinical experience is scant and the optimal dose remains unclear ¹¹. Currently, posaconazole is the only marketed azole with activity, albeit less than amphotericin B, against Mucorales ¹¹. However, posaconazole is not the drug of choice for mucormycosis and its efficacy has only been stated in salvage-therapy studies ^{12,13}. A recent study has shown that the combination of echinocandins plus amphotericin B may have a role in the treatment of mucormycosis ¹⁴. As a consequence of the relative rarity of mucormycosis and the lack of randomized and prospective clinical trials, the choice of antifungal agents suitable for their treatment has remained limited through the lack of clinical trial data ¹⁵.

Isavuconazole is a novel water-soluble azole with a broad spectrum of activity ¹⁶ and excellent bioavailability in humans,¹⁷ and is currently in late-stage clinical development for the treatment of invasive aspergillosis and candidiasis. Excellent *in-vitro* activity of isavuconazole against *Candida* spp.,¹⁸⁻²⁰ *Cryptococcus* spp.,²¹ and *Aspergillus* spp.²² has been described ²³. By contrast, publications relating to the activity of isavuconazole against the Mucorales include relatively few isolates ^{24–30}. In this paper we collate data relating to Mucorales from independent *in-vitro* studies on isavuconazole performed at eight study centers (*Table 1*).

METHODS

A total of 345 Mucorales isolates, mostly of clinical origin held in culture collections, were collected at the eight study centers in Europe, USA and Mexico (*Table 1*) between 1986 and 2007.

Each study center undertook the susceptibility testing of isolates collected at their institution (Table 2). Susceptibility testing at Study Center 1 (Innsbruck, Austria) was performed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology for spore-forming moulds,³¹ and recorded complete growth inhibition at 48 h. In addition, the center also performed MIC testing for isavuconazole against hyphal growth at 48 h and 30°C, using the method of Lass-Flörl et al. 32,33. The remaining seven centers performed susceptibility testing according to the Clinical and Laboratory Standards Institute (CLSI) reference method for filamentous fungi (M38-A) ³⁴. Growth inhibition of 100% (MIC-0) and 80% (MIC-1) was recorded at 24 h at Study Center 3 ²⁵. Growth inhibition was additionally recorded at 48 h at Study Center 6. Variations in methodology among study centers are shown in *Table 2*.

Table 2 also shows the criteria defined in the CLSI document M38-A2 ³⁵ for the susceptibility testing of filamentous fungi such as the Mucorales, against a range of antifungal agents including posaconazole and ravuconazole. These antifungal agents are not watersoluble and detailed directions are provided in the CLSI document for the preparation of the dilution series using the appropriate solvent. For uniformity of testing, isavuconazole was also diluted in DMSO.

Study Center 3 also performed MIC testing of isavuconazole using E-test strips (AB Biodisk, Solna, Sweden). The MIC was determined as the drug concentration at which the border of the elliptical inhibition zone intercepted the scale on the E-test strip. To match the scale used in the CLSI procedure, the MIC value read from the E-test strip after 24 h was raised up to the corresponding two-fold dilution as used in CLSI methodology.

The antifungal activity was expressed as the MIC range and MICs at which 90% and 50% of isolates tested were inhibited (MIC_{90} and MIC_{50} , respectively) at 24 h (48 h for Study Center 1).

ANTIFUNGAL AGENTS

All isolates were tested against isavuconazole (ISA), obtained as a reagent-grade powder from Basilea Pharmaceutica Ltd (Basel, Switzerland), and most were also tested against posaconazole (POS) and/or ravuconazole (RAV). Data relating to fluconazole and voriconazole are omitted from this report as the lack of efficacy of these antifungal agents against the Mucorales is well documented ³⁶⁻³⁸.

RESULTS

The *in vitro* activity of ISA was determined against 345 isolates of Mucorales comprising 80 Absidia spp. (49 A. corymbifera; 31 unspecified), 18 Cunninghamella spp. (3 C. bertholletiae; 15 unspecified), 77 Mucor spp. (19 M. circinelloides; 2 M. ramosissimus; 1 M. rouxianus; 55 unspecified), 29 Rhizomucor spp. (11 R. pusillus; 18 unspecified), and 139 Rhizopus spp. (28 R. arrhizus; 44 R. microsporus; 15 R. oryzae; 52 unspecified) (Table 1).

Across all study centers and following 24 h incubation, ISA exhibited $\rm MIC_{50}$ values of 1 to 4 mg/L and $\rm MIC_{90}$ values of 4 to 16 mg/L against the five genera.

Regardless of the genera tested, there were marked differences in the MIC distributions among the study centers (*Table 3, Figure 1*). At Study Center 6, MICs determined at 48 h were generally higher than those determined at 24 h.

The activity of all comparator compounds was not determined at each study center. POS was co-tested at four study centers and on the basis of $\text{MIC}_{50}/\text{MIC}_{90}$ values, was approximately 4-fold more active than ISA against each of the Mucorales genera. RAV exhibited similar MICs to ISA.

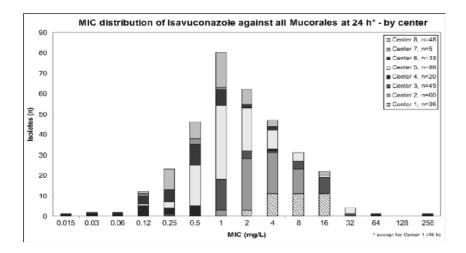
Study Center 3 also determined ISA MICs using Etest strips. In general, relative to the CLSI method, the E-test tended to generate MICs typically 2- to 4-fold higher at low MIC values but considerably higher at high MICs.

Study Center 1 also determined the MICs of ISA against hyphae and these values were similar to those obtained against the standard conidial suspension.

					-		000011		
Study Center Number	Study Location	pibisdA	plləmpApninnuD	Mucor	Rhizomucor	sndoziyy	murtesladgonvel	lstoT	Source of Isolates
1	Innsbruck, Austria	8	n	6	6	2	0	36	From various specimens including blood, respiratory tract, biop- sies and other deep body sites; collected from 1996 to 2006, at Innsbruck Medical University, Austria
0	Nuevo León, Mexico	17	0	16	0	27	0	60	Clinical isolates from the Facultad de Medicina, Universidad Au- tónoma de Nuevo León, Mexico.
က	Madrid, Spain	9	4	21	0	12	73	45	From a collection assembled between 1986 and 2007, predom- inantly from clinical sources (mainly respiratory or blood), at the Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Spain.
4	Basel, Switzerland	2	7	ε	с	7	0	20	Reference strains from type culture collections at Basilea Phar- maceutica, Basel, Switzerland.
IJ	Nijmegen, The Netherlands	17	0	13	9	62	0	98	Collected over 15 years and stored at Radboud University Ni- jmegen Medical Center, The Netherlands
9	Manchester, UK	20	7	ε	ъ	ε	0	33	From culture collection at the Regional Mycology Laboratory Manchester (RMLM), UK
7	Ohio, USA	1	0	2	0	7	0	2	From culture collection at the Cleveland Center for Medical My- cology, Ohio, USA
00	Texas, USA	9	2	10	9	19	0	48	From the Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, Texas, USA
Total		80	18	77	29	139	2	345	

TABLE 1 - Source of Mucorales isolates.

			I ABLE Z - Vari	TABLE 2 - Variations in susceptibility test methodology.	lity test methodol	logy.	
Study Center	General method	Growth inhibition endpoint	Inoculum size (CFU/mL)	Testing range (mg/L)	Incubation temperature	Control isolates	Notes
-	EUCAST	100% at 48 h, determined visually	1-2.5 x 10 ⁵ (final)	ISA 0.0312-16	37°C	A. fumigatus ATCC 204305 (ISA MIC, 1 mg/L; POS MIC 0.25 mg/L); A. flavus ATCC 204304 (ISA MIC, 1 mg/L; POS MIC 0.5 mg/L)	Media: RPMI 1640 with 2% glucose
	Hyphal MICs	100% at 24 and 48 h		ISA	30°C for 12–20 h, then 37°C for 12-18 h		Method of Lass-Flörl et al. ^{32,33}
73	CLSI M38-A	100% at 24 h	1–5 x 10 ⁴ (final)	ISA 0.015-8 POS 0.015-8 RAV 0.015-8	35°C	C. krusei ATCC 6258 (ISA MIC, 0.125 mg/L); C. parapsilosis ATCC 22019 (ISA MIC, 0.06 mg/L)	Broth macrodilution: RPMI 1640 at pH 7.0.
m	CLSI M38-A	100% (MIC-0) and 80% (MIC-1) at 24 h, read macroscopically	0.4–5 x 10 ⁴ (final)	ISA 0.015-16	35°C	A. fumigatus ATCC 204305 (ISA MIC, 0.25– 0.5 mg/L); A. flavus ATCC 204304 (ISA MIC, 1 mg/L)	
	E-Test	24 h*	2–25 x 10 ⁵ (final)	ISA	35°C		Media: RPMI+2% glucose agar plates
4	CLSI M38-A	80% at 24 h, measured by spectrophotometry at 600 nm	1–3 x 10 ³ (final)	ISA 0.0004–100 RAV 0.0004– 100 (both species dependent)	35°C	C. krusei ATCC 6258 (ISA MIC, 0.085 mg/L); C. parapsilosis ATCC 22019 (ISA MIC, 0.02 mg/L)	Broth microdilution: RPMI- MOPS medium solidified with 0.2% low-melting point agarose
Сı	CLSI M38-A	100%; read at 24 h	0.4–5 x 10 ⁴	ISA 0.06-8 POS 0.06-64	35°C	C. krusei ATCC 6258, C. parapsilosis ATCC 22019	Broth microdilution


TABLE	TABLE 2 - Continued.						
Study Center	General method	Growth inhibition endpoint	Inoculum size (CFU/mL)	Testing range (mg/L)	Incubation temperature	Control isolates	Notes
9	CLSI M38-A	90% at 24 and 48 h	1×10^4 (final)	ISA 0.015-8; POS 0.015-8; RAV 0.015-8	37°C	C. krusei ATCC 6258, C. parapsilosis ATCC 22019	Media: RPMI 1640-MOPS at pH 7.0 with 2% glucose
L	CLSI M38-A	80% at 24 h	1.5 x 10 ⁴ (final)	ISA 0.03-32	35°C	C. krusei ATCC 6258 (ISA MIC, 0.06 mg/L); C. parapsilosis ATCC 22019 (ISA MIC, 0.03 mg/L)	
Ø	CLSI M38-A	100% at 24 h	0.4–5 x 10 ⁴	ISA POS	35°C	C. parapsilosis ATCC 22019 (ISA MIC, 0.06 mg/L; POS MIC, 0.125 mg/L)	
Ref	CLSI M38-A2	POS, RAV, ITR: 100% <i>Rhizopus</i> spp., read at 21–26 h	0.4–5 x 10 ⁴ (2x final)	POS 0.03-16; RAV 0.03-16	35°C	Select from: C. krusei ATCC 6258; C. parapsilosis ATCC 22019. A. flavus ATCC 204304; A.fumigatus ATCC MYA-3627; A. flavus ATCC MYA-3631	RPMI-1640-MOPS at pH 7.0±0.1 at 25°C
MOPS – r	MOPS – morpholinepropanesulfonic						

*- due concentration at which the border of the elliptical inhibition zone intercepted the scale on the antifungal strip. Because E-test strips contain a continuous gradient of drug instead of 2-fold drug dilutions, the MIC endpoint obtained by the E-test was raised to the next two-fold dilution concentration matching the drug dilution on the scale used for the CLSI procedure

pd
Ř
Je1
Ľ
в
en
ere
efe
2
N.
38
Ž
CLSI M38-
LS
-
Зg
usiı
2
4
24
+
sα
Ś
alu
ñ
ПС
Ш
1
3
TABLE
TAB

$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Azole /		Absidia	n			Cunninghamella	umella			Mucor	ır			Rhizomucor	cor			Rhizopus	Sh			Total		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Center	ц	MIC (range	(mg/L) 50%	%06		MIC range	(mg/L) 50%	90%		MIC	(mg/L 50%) 90%		MIC	(mg/L) 50%	%06	ц	MIC	(mg/L) 50%	%06	ц	MIC	(mg/L) 50%	ng/L) 50% 90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Isavucon	azole																							
2-8 4 8 0 1 6 2-8 4 8 0 1 1 6 45 60015-16 5 1 1 6 45 60015-16 5 1 1 6 45 60015-16 5 1 1 6 45 60015-16 5 0 1	1*	~	4-8	ł	ł	б	2	I	I	6	4	1	1	6	2	I	I	2	2->8	;	I	36	2->8	8	$\stackrel{\scriptstyle \wedge}{\sim}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	17	2-8	4	~	0	ł	I	I	16	2-8	4	~	0	I	I	I	27	1-8	2	4	09	1 - 8	4	×
006-012 - 2 0.25-05 - - 3 0105-015 - - 0 - - 7 012-4 - - 20 005-128 - - 1 0 012-11 - - 1 0 012-11 - - 1 0 012-11 - - 1 012-11 - - 1 012-11 - - 1 012-11 - - 1 0 012-11 - - 1 0 012-11 - - 1 0 0 - - 1 0 0 - 1 1 0 0 - 1 1 0 0 1	3**	9	1-16	I	ł	4	2-16	I	I	21	<0.015->1	6 2	16	0	ł	I	I	12	1 - 16		16	45†	<0.015->16	7	16
0.25-8 1 2 0 13 0.5>16 4 16 6 0.12-4 3 0.12-16 2 33 0.03-4 0.35-2 0.5 1 2 0.12-11 - 2 0.25-05 - 2 0.2 - 2 33 0.03-4 0.5 - - 2 0.12-11 - 2 0.12-16 2 0.12-16 3 0.03-4 1 - - 1 0.5-4 1 2 0.12-16 2 0.12-16 3 0.12-16 1 - - 1 0 0-5-4 1 2 0.12-16 1 48 0.12-16 1 1 1 2 0.12-16 2 1 2 0.05-21 1 48 0.012-16 1 1 1 1 2 0.05-12 1 2 0.05-12 1 48 0.01	4	5	0.06 - 0.12	I	ł	2	0.25 - 0.5	I	I	3	0.12->128		ł	3	0.015-64	I	I	2	0.12-4	I	I	20	0.015->128	0.25	4
0.03-2 0.5 1 2 0.12-1 - - 3 2.0.3 - - - 3 0.03-4 0.5 - - 7 1-16 - - 2 0.12-1 - - 7 1 - - 3 0.03-4 1 - - 7 1-16 - - 1 0 - 2 0.5 - - 3 0.12-16 5 0.12-16 1 - - 1 0.54 1 2 0.15-64 2 16 0.5-2 1 4 0.12-16 4 48 0.12-16 1 0 - - 1 0 - 2 0.15-16 2 1 4 345 <0.015-16	5	17	0.25-8		2	0	ł	I	I	13	0.5->16	4	16	9	0.12-4	I	I	62	0.25->16		2	98	0.12 -> 16	-	4
0.5 - 0 - - 1 0 - - 1 0 - - 5 0.12-16 5 1 2 0.12-16 5 1 2 0.12-16 5 1 2 0.12-16 5 1 2 0.12-16 5 0.12-16 5 1 2 0.12-16 2 1 2 0.12-16 2 1 2 1 2 0.12-16 2 1 2 2 2 2	9	20	0.03 - 2	0.5	-	2	0.12 - 1	I	I	С	2-4	1	1	5	0.25 - 0.5	I	I	ю	0.12 - 1	I	I	33	0.03-4	0.5	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		0.5	ł	I	0	1	I	I	7	0.12 - 1	I	1	0	1	I	I	0	0.5	;	I	5	0.12 - 1	0.5	-
0.03-16 1 8 0.12-16 2 16 77 <0.015-128 4 15 1 4 345 <0.015-3128 1-2 1 2 0 - 1 0 -5-2 1 2 0 0.12-35 1 2 0 33 0.05-316 0.35-15 3 0.03-35 - - 27 0.5-2 1 28 0.03-316 0.5-1 - 3 0.05-35 0.05-35 0.5 0.5 0.5 0.03-0.5 0.03-10 0.55 0.5 0.03-16 0.05-25 0.5 0.15 0.05-35 0.15 0.0	8	9	1	ł	I	2	1 - 16	I	I	10	0.5-4	-	2	9	0.5 - 2	I	I	19	0.12 - 16	0.25	-	48	0.12 - 16	-	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	80	0.03-16		~	18		2	16	77	<0.015->1	28 4	16	29	0.015-64	2	16	139	0.12-32		4	345	<0.015->12	8 2	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,																							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Posacona	zole																							
	2	17	1–2		7	0	ł	I	I	16	0.5 - 2		0	0	1	I	I	27	0.5-2		7	60	0.5 - 2	-	0
	5	17	0.06 - 0.25	0.12			;	I	I	13	0.06 -> 16			9	0.03 - 0.5	I	I	62	0.03 -> 16	0.5	-	98	0.03 -> 16	0.25	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	20	0.03 -> 8	0.12	0.5	2	0.12 - 0.5	I	I	3	1-4	ł	ł	5	0.03 - 0.25	I	I	3	0.12 - 1	I	I	33	0.03 -> 8	0.25	-
0.03-16 0.25 1 0.03-16 0.25 1 0.03-16 0.25 11 0.03-32 0.5 1 29 0.03-32 2-8 4 8 0 16 2-8 4 8 0 27 1-8 2 4 60 1-8 0.12-0.5 - 2 0.5-11 - 3 0.5-128 3 0.06-1 7 0.12-8 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 0.06-128 - 20 </td <td>~</td> <td>9</td> <td>0.25-0.5</td> <td>ł</td> <td>I</td> <td>7</td> <td>0.5 - 1</td> <td>I</td> <td>I</td> <td>10</td> <td>0.25-0.5</td> <td>0.5</td> <td></td> <td>9</td> <td>0.5 - 1</td> <td>I</td> <td>I</td> <td>19</td> <td>0.06 - 32</td> <td>0.25</td> <td>0.5</td> <td>48</td> <td>0.06 - 32</td> <td>0.5</td> <td>-</td>	~	9	0.25-0.5	ł	I	7	0.5 - 1	I	I	10	0.25-0.5	0.5		9	0.5 - 1	I	I	19	0.06 - 32	0.25	0.5	48	0.06 - 32	0.5	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	60	0.03 - 16	0.25		6	0.12 - 1	I	ł	42	0.06 - 32	0.5		17	0.03 - 1	0.25	0.5	111	0.03 - 32	0.5	-	239	0.03 - 32	0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ravucons	azole																							
5 0.12-0.5 - 2 0.5-1 - - 3 0.06-1 - - 7 0.12-8 - - 20 0.06->128 20 0.03-1 0.25 1 2 0.12-0.5 - 3 2.4 - - 5 0.06-0.5 - - 20 0.06->128 42 0.03-8 0.5 8 4 0.12-1 - 22 0.5>>128 4 8 0.015-1 - 37 0.06-0.5 - 34 0.015-4	2	17	2-8	4	~	0	ł	I	I	16	2-8	4	~	0	1	I	I	27	1-8	2	4	60	1-8	4	8
20 0.03-1 0.25 1 2 0.12-0.5 - - 3 2.4 5 0.015-0.25 - - 3 0.06-0.5 - - 34 0.015-4 42 0.03-8 0.5 8 4 0.12-1 - 22 0.5>128 4 8 8 0.015-1 - 37 0.06-8 2 4 114 0.015-128	4	5	0.12 - 0.5	ł	I	2	0.5 - 1	I	I	С	0.5->128	1	1	3	0.06 - 1	I	I	2	0.12 - 8	I	I	20	0.06->128	0.25	-
42 0.03-8 0.5 8 4 0.12-1 22 0.5->128 4 8 8 0.015-1 37 0.06-8 2 4 114	9	20	0.03 - 1	0.25		2	0.12-0.5	I	I	ŝ	2-4	1	1	2	0.015-0.25	I	I	ŝ	0.06 - 0.5	I	I	34	0.015-4	0.25	-
	Total	42	0.03 - 8	0.5	~	4	0.12 - 1	I	I	22	0.5->128	4	~	~	0.015 - 1	I	I	37	0.06 - 8	7	4	114	0.015->128	7	8

Only MIC range given when n<10 isolates * except Center 1 (EUCAST methodology; MICs at 48 h) ** MIC-0 (100% growth inhibition). Also 2 isolates of Syncephalastrum spp.: isavuconazole MICs 0.25 and 8 mg/L † includes 2 isolates of Syncephalastrum spp.

DISCUSSION

Although mucormycoses are relatively uncommon, they are associated with high mortality and current treatment options are limited $^{9-11}$. Among the newer azoles, posaconazole exhibits the best *in vitro* activity against the Mucorales ¹¹. Hence the primary objective of this study was to assess the *in vitro* activity of isavuconazole, a new azole with potent activity against Candida spp. and Aspergillus spp., against a large collection of Mucorales. This was achieved by collating the raw data from eight study sites in Europe, USA and Mexico. In this general overview, isavuconazole exhibited at least moderate activity towards Mucorales with MIC₅₀ values of 1–4 mg/L and MIC₉₀ values of 4–16 mg/L against the five genera.

The susceptibility of isolates was tested using the newly introduced EUCAST guidelines for susceptibility testing of conidia forming moulds ³¹ at one study center or the CLSI guidelines for susceptibility testing of filamentous fungi ³⁴ at the other seven centers. As is apparent from *Table 2*, the CLSI guidelines allow considerable potential for laboratory to laboratory variation. Consequently a second objective of this study was to investigate the effects of laboratory variation upon MIC determinations.

Four study centers (2, 3, 5 and 8) applied similar CLSI test conditions (inoculum of $0.4-5 \times 10^4$ CFU/mL, 24-hour incubation and 100% growth inhibition for the MIC determination) and obtained similar MIC distributions, i.e. MIC ranges of 0.12-32 mg/L with modal MICs of 1-2 mg/L. Study Centers 3, 6 and 7 employed an 80% endpoint resulting in MIC ranges of <0.015-16 mg/L with a modal MIC of 0.5 mg/L. Study Center 4 employed the least severe test conditions, i.e. reduced inoculum of 10^3 CFU/mL and 80% endpoint, which resulted in typical MICs of 0.015-0.5 mg/L and a mode MIC of 0.12 mg/L. Interestingly, Study Center 4 also identified the two most isavuconazole-resistant isolates: *Rhizomucor pusillus* (MIC 64 mg/L) and *Mucor rouxianus* (MIC 128 mg/L). In

contrast, Study Center 1 employed the new EUCAST methodology, which entails a higher inoculum of 10^5 CFU/mL and a 48-hour incubation period, and this resulted in an MIC range of 2–16 mg/L and modal MIC of 4–8 mg/L. MIC results from the E-test were generally much higher than broth dilution methods, suggesting that further development of this diagnostic test is required.

The efficacy of isavuconazole towards filamentous fungi has been investigated in animal infection models. In a neutropenic murine model of disseminated *Aspergillus flavus*, isavuconazole demonstrated impressive antifungal activity in both survival and tissues burden ³⁹. In this study, mice were treated with isavuconazole pre- (PRE) or post- (POST) infection and treatment continued for a further 10 days. In the PRE models, isavuconazole (6 mg/kg) was 100% protective, itraconazole was 67% protective, but voriconazole (10 mg/kg) had 100% mortality. In the POST models, survival was >66% with isavuconazole (15 and 30 mg/kg dose), similar to voriconazole and itraconazole. In addition, isavuconazole achieved sterilization of all organs in 11/16 survivors.

Despite the laboratory variation in the present study, isavuconazole does possess *in-vitro* activity against all the Mucorales genera tested and might have a role in the treatment and prevention of mucormycosis. Posaconazole usually exhibited somewhat higher *in-vitro* activity and has similar plasma protein binding of >98% in humans. Compared with recent posaconazole clinical experience,⁴⁰ the isavuconazole regimen currently in clinical development is expected to result in 2- to 8-fold higher trough levels, consistently higher than 1 mg/L within the first days of treatment. *In-vivo* studies against the Mucorales have not been conducted. However, it will be interesting to investigate isavuconazole's activity and pharmacokinetics in ongoing clinical studies.

ACKNOWLEDGEMENTS: We would like to thank Thomas F Patterson and Annette W Fothergill (University of Texas Health Science Center at San Antonio) for their valuable con-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Absi	Absidia			Cunninghamella	amella			Mucor	r		-1	Syncephalastrum	Strum			Rhizopus	Sn			Total		
range 50% 90% range 50% 90% range cole $0.25-64$ $ 4$ $0.5-64$ $ 21$ $0.25-64$ $1-64$ $ 4$ $0.5-64$ $ 21$ $0.25-64$ $1-64$ $ 4$ $0.5-8$ $ 21$ $0.25-64$ $0.5-8$ $ 4$ $0.5-8$ $ 21$ $0.25-64$ $0.5-8$ $ 4$ $0.5-8$ $ 21$ $0.25-64$ $0.5-8$ $ 21$ $0.25-64$ $ 21$ $0.25-64$ $MIC (mg/L)$ n $MIC (mg/L)$ n $MIC (mg/L)$ n $MIC (mg/L)$ $MIC (mg/L)$ n $MIC (mg/L)$ n $MIC (mg/L)$ n $MIC (mg/L)$ $minge 50\% 90\% 90\% 90\% 90\% 10 minge 50\% 90\% 90\% 90\% 10 $	n	MIC	C (mg)	(L)	u	MIC	(mg/L)		п	MIC	(mg/L)		u	MIC (mg/L)	mg/L)		u	MIC (MIC (mg/L)		u	MIC (mg/L)	ng/L)	
ole 4 $0.5-64$ 21 $0.25-64$ $1-64$ - 4 $4-64$ 21 $0.25-64$ $1-64$ - 4 $4-64$ 21 $0.25-64$ $0.5-8$ - 21 $0.25-64$ 21 $0.25-64$ $0.5-8$ - - 4 $0.5-8$ - 21 $0.25-64$ MiC (mg/L) n MIC (mg/L) n MIC (mg/L) n MIC (intro MIC (mg/L) n MIC (mg/L) n MIC (intro n MIC (intro mine 50% 90% 90% 90% 90% mine indice 50% 90% 90% 10 10 $0.12-4$ 0.5 2 $0.25-2$ $ 3$ 16 $0.12-16$ 0.5 8 2 $0.12-1$ $ 3$ $1-16$ $0.12-4$ 0.5 2 $0.12-1$ $ 3$ 4 <		range		<i></i> % 90%	` 0	range	50%	90%06		range	50% 90%	90%		range	50%	50% 90%		range	50% 90%	90%		range	50% 90%	90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e 3, Isavucon	azole																						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					4	0.5 - 64	ł	1	21	0.25 - 64	7	64	7	0.25 - 0.5	;	;	12	0.5 - 64		64	45^{\dagger}	0.25-64	7	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	1	4	4-64	1	1	21	0.25 - 64	32	64	7	0.25-4	1	1	12	1-64	64	64	45^{\dagger}	0.25-64	32	64
Absidia Cuminghamella Mucon MIC (mg/L) n MIC (mg/L) n MIC (rom/L) range 50% 90% n MIC (rom/L) n MIC (rom/L) range 50% 90% 20% 90% range 50% 90% range 0.12-4 0.5 2 2 0.25-2 - 2 3 4 0.12-16 0.5 >8 2 0.12-0.25 - 3 16 0.03-16 0.25 5 0.12-0.1 - 3 1-16 0.12-4 0.25 1 2 0.12-1 - 3 1-6 0.12-4 0.25 1 2 0.12-1 - 3 4-8 4 - - 3 2-4 3 4-8 4 - - 3 2-4 - 5 4-8	SI MIC-1* 6		1		4	0.5 - 8	ł	ł	21	<0.015-10	1	8	7	0.125-4	ł	ł	12	0.5-4	0.5	4	45^{\dagger}	< 0.015 - 16	-	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Absi	idia			Cunningh	amella			Muco	r			Rhizomucor	cor			Rhizopus	sn			Total		
range 50% 90% range 50% 90% range $0.12-4$ 0.5 2 2 $0.25-2$ $ 3$ 4 $0.12-16$ 0.5 >8 2 $0.12-0.25$ $ 3$ 16 $0.03-16$ 0.25 >8 2 $0.12-1$ $ 3$ $1-16$ $0.12-4$ 0.25 >8 2 $0.12-1$ $ 3$ $1-16$ $0.12-4$ 0.25 1 2 $0.12-1$ $ 3$ $4-8$ $0.12-4$ 0.25 1 2 $0.12-1$ $ 3$ $4-8$ $0.12-4$ 0.25 1 2 $0.12-1$ $ 3$ $4-8$ sature 1 2 $0.12-1$ $ 3$ $4-8$ 4 $ 3$ $2-4$ $ 9$ 4	n	MI(C (mg/	(L)	u	MIC	(mg/L)		п	MIC	(mg/L)		u	MIC (mg/L)	mg/L)		n	MIC (MIC (mg/L)		u	MIC (mg/L)	ng/L)	
0.12-4 0.5 2 2 0.25-2 - - 3 4 0.12-16 0.5 >8 2 0.12-0.25 - - 3 16 0.03-16 0.25 >8 2 0.12-1 - - 3 16 0.12-4 0.25 1 2 0.12-1 - - 3 1-16 0.12-4 0.25 1 2 0.12-1 - - 3 4-8 0.12-4 0.25 1 2 0.12-1 - - 3 4-8 savuconazole, Hyphal MICs 4 - 3 2-4 - 9 4		range		%06 %	0	range	50%	90%0		range	50% 90%	90%		range	50% 90%	90%		range	50% 90%	90%		range	50% 90%	90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e 6, CLSI 48	h																						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	conazole 20		0.	5 2	7	0.25 - 2	ł	1	б	4	I	I	5	0.25 - 2	ł	1	З	0.12 - 2	1	ł	33	0.12-4	-	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					7	0.12 - 0.25	ł	1	С	16	I	I	5	0.06 - 1	1	;	3	0.06 - 16	;	ł	33	0.06 - 16	0.5	16
0.12-1 3 4-8 2-4 9 4						0.12 - 1	ł	1	С	1 - 16	I	I	5	0.12 - 0.5	ł	;	3	0.12-4	;	ł	33	0.03 - 16	0.25	16
2-4 9 4	conazole 20			25 1	7	0.12 - 1	:	1	3	48	ł	ł	5	0.12 - 1	1	:	3	0.06 - 1	:	1	33	0.06 - 8	0.5	4
2-4 9 4																								
8 4 3 2-4 9 4	e 1, EUCASI	f, Isavucona	azole,	Hyphal	MICs	14																		
			T			2-4	ł	1	6	4	I	I	6	2-4	ł	;	2	4	ł	ł	36	2-4	4	4
3 >8 9 >8			1	1	б	~	ł	ł	6	~	I	I	6	48	ł	ł	7	4	ł	ł	36	4-16	16	16

TABLE 4 - MIC values using alternative methodologies and endpoints.

Only MIC range given when n<10 isolates * except Center 1 (EUCAST methodology; MICs at 48 h) ** MIC-0 (100% growth inhibition). Also 2 isolates of Syncephalastrum spp.: isavuconazole MICs 0.25 and 8 mg/L † includes 2 isolates of Syncephalastrum spp.

IN VITRO ANTIFUNGAL ACTIVITY OF ISAVUCONAZOLE AGAINST 345 MUCORALES ISOLATES COLLECTED AT STUDY CENTERS IN EIGHT COUNTRIES 279

tribution to these studies. Jesús Guinea has received research grants from Basilea Pharmaceutica, Basle, Switzerland. This work was partly supported by grants from Basilea Pharmaceutica, Basle, Switzerland. Writing services were provided by Micron Research Ltd, UK.

REFERENCES

¹Wingard J. Zygomycosis: epidemiology and treatment options. Adv Stud Med 2006; 6: S526–S530

² Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13: 236–301

³ Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res 2007; 111: 509–547

⁴Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, *et al.* Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 2005; 41: 634–653

⁵ Glöckner A, Vehreschild JJ, Cornely OA. Zygomycosis – current epidemiological aspects. Mycoses; 50 Suppl 1: 50–55

⁶ Greenberg RN, Scott LJ, Vaughn HH, Ribes JA. Zygomycosis (Mucormycosis): emerging clinical importance and new treatments. Curr Opin Infect Dis 2004; 17: 517–525.

⁷ Kauffman CA. Zygomycosis: reemergence of an old pathogen. Clin Infect Dis 2004; 39: 588–560

⁸ Kontoyiannis DP, Lionakis MS, Lewis RE, Chamilos G, Healy M, Perego C, et al. Zygomycosis in a tertiary-care cancer center in the era of *Aspergillus*-active antifungal therapy: a casecontrol observational study of 27 recent cases. J Infect Dis 2005; 191:1350–1360

⁹ Slavin MA, Szer J, Grigg AP, Roberts AW, Seymour JF, Sasadeusz J, et al; the Mycoses Interest Group of Australasian Society for Infectious Diseases: Guidelines for use of antifungal agents in the treatment of invasive *Candida* and mould infections (July 2003) Available from: <u>http://www.racp.edu.au/asid/</u> <u>antifungal/antifungal.pdf</u>. Accessed January 07, 2009.

¹⁰Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis 2000; 30: 653–657

¹¹ Rogers TR. Treatment of zygomycosis: current and new options. J Antimicrob Chemother 2008; 61 Suppl 1: i35–i39

¹² van Burik JA, Hare RS, Solomon HF, Corrado ML, Kontoyiannis DP. Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis 2006; 42:e61–e65. Erratum in: Clin Infect Dis 2006 Nov 15;43: 1376

¹³ Greenberg RN, Mullane K, van Burik JA, Raad I, Abzug MJ, Anstead G, et al. Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 2006; 50: 126–133

¹⁴ Reed C, Bryant R, Ibrahim AS, Edwards J Jr, Filler SG, Goldberg R, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis 2008; 47: 364–371

¹⁵ Spellberg B, Edwards Jr J, Ibrahim A. Novel perspectives on Mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 2005; 18: 556–569

¹⁶ González GM. In vitro activities of isavuconazole against opportunistic filamentous and dimorphic fungi. Med Mycol 2009; 47: 71–76

¹⁷ Schmitt-Hoffmann A, Roos B, Maares J, Heep M, Spickerman J, Weidekamm E, et al. Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother 2006; 50: 286–293

¹⁸ Mouton JW, Verweij PE, Warn P, Denning D, Heep M, Isham N, *et al.* In vitro activity of a new triazole BAL4815 against *Candida* isolates with decreased fluconazole susceptibility. 2nd Trends of Medical Mycology (TIMM), Berlin, Germany 2005 Oct 23-26 . Poster no. P-021. ECMM, Paris, France

¹⁹ Breuker I, Meis JF, Verweij PE, Mouton JW. In vitro activity of the new azole BAL4815 against *Candida* isolates comprising resistant *C. albicans* and less susceptible *Candida* spp. In: Abstracts of the 45th ICAAC, Washington, DC, 2005 Dec 16–19. Abstract-M-1621. ASM, Washington, DC, USA

²⁰ Seifert H, Aurbach U, Stefanik D, Cornely O. In vitro activities of isavuconazole and other antifungal agents against *Candida* bloodstream isolates. Antimicrob Agents Chemother 2007; 51: 1818–1821

²¹ Illnait-Zaragozi M-T, Martinez GF, Curfs-Breuker I, Fernandez CM, Boekhout T, Meis JF. In vitro activity of the new azole isavuconazole (BAL4815) compared with six other antifungal agents against 162 *Cryptococcus neoformans* isolates from Cuba. Antimicrob Agents Chemother 2008; 52: 1580– 1582

²²Warn PA, Sharp A, Denning DW. In vitro activity of a new triazole BAL4815, the active component of BAL8557 (the water-soluble prodrug), against *Aspergillus* spp. J Antimicrob Chemother 2006; 57: 135–138

²³ Pasqualotto A, Denning D. New and emerging treatments for fungal infections. J Antimicrob Chemother 2008; 61: i19– i30

²⁴ de la Escalera CM, Aller AI, López-Oviedo E, Romero A, Martos AI, Cantón E, et al. Activity of BAL 4815 against filamentous fungi. J Antimicrob Chemother 2008; 61: 1083–1086

²⁵ Guinea J, Peláez T, Recio S, Torres-Narbona M, Bouza E. In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of Zygomycete, *Candida, Aspergillus, Fusarium, and Scedosporium Species.* Antimicrob Agents Chemother 2008; 52: 1396–1400

²⁶ Gonzalez GM. In vitro activities of isavuconazole against opportunistic filamentous and dimorphic fungi. Med Mycol 2009; 47: 71–76

²⁷ Perkhofer S, Lechner V, Lass-Flörl C. The in vitro activity of isavuconazole against *Aspergillus* species and Zygomycetes.according to EUCAST methodology. Antimicrob Agents Chemother 2009; 0: AAC.01530-08v1

²⁸ Warn P, Sharp A, Denning D. In vitro activity of BAL4815 against Zygomycetes. The International Society for human and Animal Mycology (ISHAM), Paris, France 2006 Jun 25–29. Poster P-0158.

²⁹ Verweij PE, van der Lee HAL, Rijs AJMM. Isavuconazole is active against zygomycetes in vitro. 2nd Trends of Medical Mycology (TIMM), Berlin, Germany 2005 Oct 23–26. Poster no. P-051. ECMM, Paris, France

³⁰ Ghannoum M, Isham N. Antifungal activity of BAL4815, a novel azole against dermatophytes and emerging non-dermatophyte fungi including zygomycetes. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington DC, 2005 Dec 16–19. Abstract-M-1623. ASM, Washington, DC, USA

³¹ Subcommittee of Antifungal Susceptibility Testing of the European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases. 2007. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. <u>http://www.escmid.org/Files/EU-CAST%20moulds%20discussion%1 20document 071019.pdf</u>

³² Lass-Flörl C, Nagl M, Speth C, Ulmer H, Dierich MP, Würzner R. Studies of in vitro activities of voriconazole and itraconazole against *Aspergillus* hyphae using viability staining. Antimicrob Agents Chemother 2001; 45: 124–128

³³ Perkhofer S, Lugger H, Dierich MP, Lass-Florl C. Posaconazole enhances the activity of amphotericin B against Aspergillus hyphae in vitro. Antimicrob Agents Chemother 2007; 51: 791–793

³⁴ Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard – First Edition. CLSI document M38-A. Wayne, PA, USA: 2002

³⁵ Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard – Second Edition. CLSI document M38-A2. Wayne, PA, USA: 2008

³⁶ Cuenca-Estrella M, Gómez-Lopez A, Mellado E, Buitrago M, Monzón A, Rodríguez-Tudela JL. Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother 2006; 50:917–921

³⁷ Almyroudis NG, Sutton DA, Fothergill AW, Rinaldi MG, Kusne S. In vitro susceptibilities of 217 clinical isolates of Zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother 2007; 51: 2587–2590

³⁸ Sabatelli F, Patel R, Mann PA, Mendrick CA, Norris CC,

Hare R, *et al.* In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother 2006; 50: 2009–2015

³⁹ Warn PA, Sharp A, Mosquera J, Spickermann J, Schmitt-Hoffmann A, Heep M, et al. Comparative in vivo activity of BAL4815, the active component of the prodrug BAL8557, in a neutropenic model of dissemininated *Aspergillus flavus*. J Antimicrob Chemother 2006; 58: 1198-1207

⁴⁰ Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis 2007; 44: 2-12