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Introduction

Non-albicans Candida species (NAC) are being 
 increasingly reported as both colonizers and patho-
gens causing nosocomial fungal bloodstream infections 
(Pfaller et al. 2007a) and may account for almost 50% of 
all non-superficial Candida infections (Tortorano et al. 
2006; Sobel 2006; Yang et al. 2009) the most common 
being C. glabrata, C. tropicalis, and C. parapsilosis (Tan 
et al. 2009; Sipsas et al. 2009). Traditionally C. tropicalis 
has been considered as second to C. albicans in terms 
of virulence and clinical importance though in recent 
years, epidemiological shifts have seen it being super-
seded by C. glabrata and other NAC in some institu-
tions. In equatorial regions though, C. tropicalis remains 
a significant cause of yeast infections. However, relative 
to the wealth of information available on C. albicans, 
very much less is known about C. tropicalis. This paper 
reviews what is currently known about C. tropicalis 
and its role in human disease. Specific topics will be 
discussed, including its biology, epidemiology, patho-
genesis, clinical perspectives especially infections in 
special patient groups, treatment, and antimicrobial 
resistance.

Literature search

Literature searches were done using the Pubmed 
gateway to access Medline (1966 to November, 2009). 
Keywords denoting Candida, Candida tropicalis, Candida 
 identification, Candida typing, candidiasis, and candido-
sis were used. Additionally, we checked references from 
relevant publications and review articles to access  articles 
 published before 1966.

Biology and identification

C. tropicalis together with all other Candida spe-
cies are members of the kingdom Fungi, of the divi-
sion Ascomycota, class Hemiascomycetes, and order 
Saccharomycetales (Steffan et al. 1997). Traditional 
methods of systematics based on physical/morphologi-
cal characteristics are being re-evaluated with increasing 
data from genomic sequencing for phylogenic analyses 
as one example illustrated in Figure 1 demonstrates 
(Fitzpatrick et al. 2006).

C. tropicalis is a diploid dimorphic yeast which exists as 
either ellipsoidal budding cells or as a pseudomycelium 
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Abstract
Candida tropicalis is one of the more common Candida causing human disease in tropical countries; the fre-
quency of invasive disease varies by geography causing 3–66% of candidaemia. C. tropicalis is taxonomically 
close to C. albicans and shares many pathogenic traits. C. tropicalis is particularly virulent in neutropenic hosts 
commonly with hematogenous seeding to peripheral organs. For candidaemia and invasive candidiasis 
amphotericin B or an echinocandin are recommended as first-line treatment, with extended-spectrum tria-
zoles acceptable alternatives. Primary fluconazole resistance is uncommon but may be induced on exposure. 
Physicians in regions where C. tropicalis is common need to be mindful of this lesser-described pathogen.
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consisting of long, branched elements bearing conidia 
singly, in short chains or clusters. In rare cases C. tropi-
calis can form true hyphae, a property uniquely shared 
with C. albicans (Suzuki et al. 1991) (Figure 2).

Colonies on Sabourand or yeast potato dextrose agar 
are cream-colored or off white to grey, dull, soft, smooth, 
and creamy or wrinkled or tough. These colonies cannot 

be dependably distinguished from other Candida species 
based on macroscopic morphology or growth rate alone 
but are identified by the absence of terminal chlamy-
dospores and a range of biochemical assimilation tests 
(Espinel-Ingroff et al. 1996). Commercially available chro-
mogenic agars are available to assist in early presumptive 
identification of C. tropicalis from other Candida species: 
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Figure 1. Example of fungal phylogeny based on combined gene analysis.
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CHROMagar™ Candida (CHROMagar Company Ltd) 
(Freydiere et al. 1997), Candida Diagnostic Agar (CDA) 
(PPR Diagnostics Ltd) (Cooke et al. 2002) and BiGGY agar. 
(Yucesoy et al. 2005) The former 2 are based on the ability 
of yeasts to hydrolyze either ß- glucosaminidase or indolyl 
glucosaminide substrates to colored end-products while 
the BiGGY agar utilizes the capability of Candida yeast in 
sulphite reduction. C. tropicalis  colonies on CHROMagar™ 
Candida turn metallic blue after 24-72 hours incubation 
(Figure 3) (Odds et al. 1994), in contrast to C. albicans and 
C. krusei /other NAC which appear green and rose-colored 
respectively (Figure 4) (Hospenthal et al. 2006). On CDA 
C. tropicalis and C. kefyr appear pink with other species 
being white, yellow, or white with red spots (Cooke et al. 
2002). C. tropicalis form dark brown/black colonies with a 
metallic sheen in BiGGY agar. Kit accuracy in C. tropicalis 

identification is variable, reportedly in the range of 73% to 
almost 100% (Cooke et al. 2002). Other media are available 
for to identify Candida from mixed populations including 
OCCA medium (Ozcan et al. 2009). Following presump-
tive isolation, a range of commercial kits are available for 
identity confirmation as required. These kits depend on 
assimilation of carbohydrates or hydrolysis of chromog-
enic substrates to distinguish from other Candida spp. 
(Lopez et al. 2005) API 20C (Figure 4) and API 32C AUX 
(bioMerieux France) have been widely used to character-
ize yeasts and correctly identify 90-95% of C. tropicalis as 
reported for API 20C (Heelan et al. 1998). Likewise, the 
Vitek yeast biochemical card has similar success in C. 
tropicalis identification though reading should ideally 
be performed at 48 hours to avoid early misidentification 
(Fenn et al. 1994). Current molecular diagnostics gener-
ally involves in-house PCR assays with internal validation 
and tends to be genus, rather than species-specific for C. 
tropicalis (Guo et al. 2006; Borman et al. 2008).

The number of chromosomes and the genomic size 
of C. tropicalis are not known precisely, but pulse-field 
gels reveal approximately 5–6 pairs of homologous chro-
mosomes and a genome size of ∼30Mb (Doi et al. 1992). 
The C. tropicalis genome of strain MYA-3404 has been 
sequenced using whole genome shotgun technology 
(two plasmid libraries and a Fosmid library) as part of 
the Broad Institute Fungal Genome Initiative [Candida 
tropicalis Sequencing Project. Broad Institute of Harvard 
and MIT (http://www.broad.mit.edu)]. Prior to this, 
about 100 gene sequences of C. tropicalis were available 
in public databases corresponding to 60 different genes. 
The resulting 10X assembly was made public in January 

Negative
reaction

Positive
reaction

Figure 4. Biomerieux API 20C AUX strip identifies yeasts in 24–48 hours 
by assimilation test panels. Wells demonstrating turbidity greater than 
negative control are considered as positive.

Figure 2. C. tropicalis pseudohyphae on cornmeal agar.

C.krusei

C.albicans

C.tropicalis

Figure 3. Candida spp identification using CHROMagar™ Candida 
identification plates.
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of 2005. Initial automated analysis revealed a predicted 
proteome of 6,258 transcribed genes with a gene density 
of 62.1%. A random genomic library is also available and 
is composed of 1786 clones (average insert size 3.5 Kb) 
(Blandin et al. 2000). The guanine-cytosine content of 
nuclear sequences is 34.9%. (Blandin et al. 2000) have 
reported more than 1000 novel genes (from the analysis 
of 2514 random sequence tags) which have been depos-
ited at EMBL with the accession numbers AL438875-
AL441602.

Epidemiology

The incidence of bloodstream infections (BSI) caused 
by Candida species has risen 5–10 fold to become the 
fourth leading cause of nosocomial bloodstream infec-
tions (BSI) in developed countries (Wisplinghoff et al. 
2004; Pfaller et al. 2001) with incidence rates of up to 20 
per 10,000 hospital discharges in the US (Pfaller et al. 
2007a). While C. albicans has remained the most com-
mon species causing invasive candidiasis worldwide, 
there is a trend towards decrease in isolation of C. 
albicans accompanied by an increase in non-albicans 
Candida between 1997-2003 (Pfaller et al. 2007a; 
Pfaller et al. 2007b). C. tropicalis represents 3–66% of 
all Candida bloodstream isolates worldwide (Viscoli 
et al. 1999; Pfaller et al. 2000; Sipsas et al. 2009; Yap 
et al. 2009; Yang et al. 2009; Sabino et al. 2009; Tan 
et al. 2009) and in many centers is the second most 
common Candida isolated. This variability in preva-
lence is subject to the geographical location: e.g. US 
hospitals 12–25%, European hospitals 4.5–9%, Brazil 
20–24%, and South Asia, between 20% to more than 
60% (Viscoli et al. 1999; Krcmery et al. 1999; Leung et al. 
2002; Pfaller et al. 1999; Tortorano et al. 2002; Slavin 
2002; Nucci et al. 2007; Yang et al. 2009; Sipsas et al. 
2009). The relatively lower frequency of C. tropicalis 
infections in some developed countries of the West (in 
which C. glabrata is emerging as second in importance 
to C. albicans) should not detract attention away from 
C. tropicalis as the latter has a notable prevalence in 
tropical climates and has a predilection to cause  disease 
in certain patient groups.

It is notable that equatorial countries in South Asia 
(India, Thailand, Singapore, Thailand) and Brazil 
(Foongladda et al. 2004; Goldani et al. 2003; Gupta et al. 
2004; Wang et al. 2004; Cheng et al. 2006; Tan et al. 2009) 
have reported a high frequency of C.tropicalis BSI (Viscoli 
et al. 1999; Leung et al. 2002; Pfaller et al. 1999; Tortorano 
et al. 2002; Slavin 2002). The tropical climate, temperature 
and humidity may account for increased environmental 
adaptability of C. tropicalis or potentially higher levels of 
exposure from environmental sources (Vogel et al. 2007). 
Physicians practicing in these regions should be mindful 
of this epidemiological shift.

C. tropicalis BSI is more common (and not infre-
quently supersedes C. albicans BSI) in oncology 
patients with the highest infection rates seen in bone 
marrow transplant recipients (11–50%), followed by 
hematological malignancies (18%) and lowest rates in 
solid tumors (4–9%) (Viscoli et al. 1999; Alvarez-Gasca 
et al. 1998; Kontoyiannis et al. 2001; Sipsas et al. 2009; 
Sabino et al. 2009; Presterl et al. 2007). Investigations 
of risk factors associated with C. tropicalis infection 
( Abi-Said et al. 1997; Lecciones et al. 1992; Krcmery 
et al. 1999) have indicated that acute leukemia, neu-
tropenia, and anti-neoplastic therapy are important 
predisposing factors.

Candidemic episodes involving C. tropicalis arising 
from neonatal intensive care units also occur, but are 
infrequent compared with C. albicans and C. parapsilosis 
(Roilides et al. 2003; Fridkin et al. 2006). Candidal colo-
nization of skin, mucosal or catheter surfaces constitutes 
the origin of invasive disease, risks of which are increased 
in very-low birth weight (VLBW) infants < 1500 gram with 
an immature innate defense system (Singhi et al. 2008; 
Celebi et al. 2008).

Pathogenesis

C. tropicalis appears to be at least as virulent and patho-
genic as any other member of the genus (Wingard 1995; 
Abi-Said et al. 1997; Nucci et al. 2007). Studies have noted 
that after colonization, C. tropicalis has the ability to rap-
idly disseminate in the immunocompromised host and 
cause high mortality. C. tropicalis has been reported to 
cause increased overall crude mortality as compared 
to other Candida spp. (Costa et al. 2000; Pfaller 1996) 
though other recent studies have not corroborated this 
trend (Weinberger et al. 2005; Almirante et al. 2005; 
Sipsas et al. 2009).

Extensive animal studies in the 1930s clearly demon-
strated that C. tropicalis was pathogenic for mice and rats 
following inoculation of large microbial doses (Stovall 
et al. 1933). Studies that followed confirmed the high 
comparative pathogenicity of C. tropicalis to C. albicans 
(Hasenclever et al. 1961). In studies of non-immuno-
compromised mice, 60–70% of C. tropicalis isolates were 
pathogenic and caused lethal infections within 28 days 
(Bistoni et al. 1984). Inoculation of Candida in murine 
models produced large differences in the 50% infective 
dose with C. tropicalis notably being more pathogenic 
than paired strains of C. albicans; mirroring clinical 
observations in the patient groups from which these iso-
lates were collected. In immunocompromised mice C. 
tropicalis has the ability to invade gastrointestinal tract 
mucosa and disseminate within 30 minutes of inocula-
tion (de-Repentigny et al. 1992). Consequently in these 
studies 20% of mice infected with C. tropicalis died in 
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comparison to just 4% of those infected with C. albi-
cans (Fromtling et al. 1987). In head-to-head studies of 
virulence of 8 species of C. albicans and C. tropicalis, 
the latter were the most pathogenic (Arendrup et al. 
2002). These in-vivo models provide the experimental 
evidence showing that C. tropicalis is at least as virulent 
as C. albicans, and possibly more virulent than other 
non-albicans species.

Virulence factors

Candida spp. have many virulence attributes which assist 
in invasion of host tissues. These include adherence to 
host tissues, production of extracellular enzymes, par-
ticularly proteases, the formation of hyphae to aid in eva-
sion of host immune defenses and biofilm production. 
Pathogenesis of candidiasis has been associated with the 
differential and temporal regulation of the expression 
of genes involved in dimorphism, adherence, invasion, 
and coding for secreted hydrolases (Staib et al. 2001). The 
secreted enzymes which are considered integral to the 
pathogenesis of Candida are categorized into two main 
types: proteinases (Hube et al. 1998) which hydrolyze 
peptide bonds, and phospholipases (Oksuz et al. 2007), 
which hydrolyze phospholipids. These secreted enzymes 
facilitate the penetration into the host and counteract the 
defense system.

Secreted aspartic proteases (SAP) have been inten-
sively investigated in C. albicans in which there appear 
to be at least 10 distinct SAPs. It has been established that 
different SAPs are important in the ability of the yeast 
to adhere to mucosa, deep tissue and invade into deep 
organs (Schaller et al. 1999; De-Bernardis et al. 1999). 
C. tropicalis has been shown to secrete a family of SAP 
enzymes (SAPt) in invasive disease (Borg-von-Zepelin 
et al. 1999; Parra-Ortega et al. 2009) demonstrated 
using reverse transcriptase PCR of RNA isolated from 
cells grown in vitro (Zaugg et al. 2001). SAP activity is 
important for the adherence of C. tropicalis to target cells 
(Kontoyiannis et al. 2001) and a strain deficient in SAP 
secretion was less adherent than other protease secret-
ing strains. Whereas the various SAP proteins may digest 
specific proteins, agglutinin-like sequence (ALS) genes 
encode cell-surface glycoproteins implicated in adhe-
sion to host surfaces and this have also been identified 
in C. tropicalis (Hoyer et al. 2001). Phospholipases play 
an active role in the invasion of host tissues by disrupting 
the epithelial cell membranes and allowing the hyphal tip 
to enter the cytoplasm (Oksuz et al. 2007).

Biofilm formation

There are multiple factors which predispose individuals 
to disseminated yeast infections but the implantation of 
central venous catheters (CVC) appear to be the most 

common risk factor for the development of disease in 
patients without neutropenia or major immunode-
ficiencies (Rex 1996; Tumbarello et al. 2007). Biofilm 
formation is recognized as a potential virulence fac-
tor for the development of candidiasis (d’Enfert 2009). 
Remarkably, 70–90% of bloodstream isolates of C. tropi-
calis were shown to produce biofilms (Shin et al. 2002; 
Tumbarello et al. 2007) which was the highest proportion 
of all Candida spp. examined (for other species <25% of 
blood stream isolates produce biofilms). In addition a 
clear relationship was demonstrated between the ability 
of isolates to form biofilms, their isolation from patients 
with indwelling CVCs and parenteral nutrition. Biofilm 
formation of silicone rubber voice prosthesis limits the 
lifetime of the implants causing increased air resist-
ance and valve failure. Combination bacterial and yeast 
biofilms are commonly isolated from failed prosthetic 
units with C. tropicalis particularly associated with 
units removed from patients requiring frequent changes 
(Elving et al. 2002; Elving et al. 2003). Biofilm formation is 
important in the colonization by C. tropicalis of dentures 
(Dorko et al. 2001) as well as a variety of other plastic 
devices (catheters, cannulas, and drains) (Dorko et al. 
1999) all of which are potential foci of infection. C. tropi-
calis biofilms also demonstrate increased resistance to 
antifungal agents (Bizerra et al. 2008; Melo et al. 2007). 
Thus the ability to develop biofilms is a major virulence 
factor for C. tropicalis for certain types of infection.

Spectrum of human disease

Superficial and Localized Mucosal Infections

Superficial infections caused by C. tropicalis are rarely 
reported with isolated cases of subcutaneous abscesses 
(Benson et al. 1987) and skin and nail infections 
(Jautova et al. 2001; Kwok et al. 1998). C. tropicalis has 
been reported as part of the normal commensal flora of 
skin and nails in approximately 10% of patients (Kam 
et al. 2002). It is the second most common yeast asso-
ciated with nappy rash (diaper rash) and is isolated in 
 approximately 7% of cases (Dorko et al. 2003).

Carriage of C. tropicalis in the normal oral cavity is 
common with rates approaching 16% (Martin et al. 
1983; Luque et al. 2009). Increases in this rate are seen 
in individuals with dentures (Vanden et al. 2008), HIV 
infection (Tumbarello et al. 1996; Costa et al. 2006), 
and irradiation for malignancies (Leung et al. 2000; 
Thaweboon et al. 2008). Oral thrush and oropharyngeal 
candidiasis caused by C. tropicalis is rare but is present in 
3–8% of AIDS patients especially those with recurrent dis-
ease (Tumbarello et al. 1996). Oral colonization is com-
mon in patients with cancer and it is likely that this is a 
source of infection in patients who subsequently develop 
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disseminated invasive disease (Redding et al. 1988; 
Abi-Said et al. 1997) or might be implicated in disease 
development (Nieminen et al. 2009). C. tropicalis can be 
isolated from gastric aspirates and translocate from the 
gut to cause sepsis at distant sites (MacFie et al. 1999; 
Marshall et al. 1993). Gastric and intestinal colonization 
by C. tropicalis is common in normal individuals (up to 
30%) and a recognized risk factor for the development of 
invasive candidiasis (Cole et al. 1996).

Vaginal infections

C. albicans remains accountable for at least 80–90% of 
all cases of candidal vulvovaginitis (CVV) (Yang et al. 
2003; Richter et al. 2005; Holland et al. 2003). C tropicalis 
is implicated in between 1% to more than 10% of CVV 
cases (Parazzini et al. 2000; Richter et al. 2005) and these 
may be associated with recurrent disease and cases with 
failed primary therapy (particularly after self-medication) 
(Horowitz et al. 1985).

Urinary tract infections

Candiduria may be found in up to 1–2% of asympto-
matic individuals (Fisher et al. 1995; Rivett et al. 1986). 
Yeast infections of the urinary tract usually present as 
nosocomial infections and rarely occur as community-
acquired infections in a structurally normal urinary tract 
(Lundstrom et al. 2001). The majority of Candida urinary 
infections are caused by C. albicans (51.8%) but a small 
and significant proportion of more than 10% are caused 
by C. tropicalis (Fraser et al. 1992; Sobel et al. 2000). The 
incidence of C. tropicalis candiduria may be variable 
and may be suggestively higher in locations whereby 
C. tropicalis BSI rates are significant (Chakrabarti et al. 
1997; Paul et al. 2004). An increased incidence of can-
diduria is also seen in patients with diabetes mellitus 
(Stapleton 2002) and those suffering from leukemia 
(Rivett et al. 1986).

Invasive and disseminated infections

Early onset of fungaemia, high APACHE (Acute 
Physiology And Chronic Health Evaluation) II scores, 
pretreatment with antifungals and delayed initiation of 
appropriate therapy are indicators of poor prognosis in 
candidemia.

Mortality associated with C. tropicalis fungaemia is 
high with rates of 40–70% mortality noted (Leung et al. 
2002; Tortorano et al. 2002; Yap et al. 2009). A variety of 
other specific risk factors have been identified both for 
the development of the infection and subsequent mor-
tality: these include leukemia, anti-neoplastic chemo-
therapy, previous neutropenia, central venous catheters, 

a long stay on intensive care and total parenteral nutri-
tion (Wingard 1995; Abi-Said et al. 1997; Fraser et al. 
1992; Leung et al. 2002; Kontoyiannis et al. 2001; 
Gottfredsson et al. 2003), similar to those predisposing to 
Candida BSI in general. The proportion of infections in 
children is lower than in adults (MacDonald et al. 1998; 
Huttova et al. 1998) but is relatively common in pediatric 
leukemia (Flynn et al. 1993). Leukemia and secondary 
neutropenia are reportedly independent factors favoring 
C. tropicalis fungaemia (Vigouroux et al. 2006). Sixty to 
80% of neutropenic patients colonized with C. tropica-
lis may eventually develop invasive infection (Wingard 
1995). Duration of ITU stay tends to be longer in patients 
with C. tropicalis BSI compared to C. albicans during 
the course of  infection. Delayed clearance of positive 
blood cultures may also be encountered in C. tropica-
lis fungaemia. Disease presentation can either be as a 
disseminated disease similar to other candidaemias or 
more clinically overt disease with widespread rash and 
myositis.

C. tropicalis has also been associated with infec-
tions in single organs in which the initial infection 
was almost certainly spread by hematogenous seed-
ing. About 20% of cases of Candida-associated verte-
bral osteomyelitis are due to C. tropicalis (Miller et al. 
2001). Cases of spondylodiscitis and osteomyelitis 
(Sebastiani et al. 2001; McCullers et al. 1998), prostati-
tis (Bastide et al. 2005), pericarditis (Gronemeyer et al. 
1982), endocarditis (Zedtwitz-Liebenstein et al. 2001; 
Nagaraja et al. 2005), and meningitis (McCullers et al. 
2000; Flynn et al. 1993) caused by C. tropicalis have 
also been reported.

Endophthalmitis secondary to disseminated candi-
demia deserves special mention: the eye was thought 
to be a common end organ target perhaps due to an 
unusual tropism of Candida spp. for the eye as com-
pared to other deep organs (Klotz et al. 1992; Sallam 
et al. 2006). Affected patients may notice a decreased 
in visual acuity. The incidence of endogenous Candida 
endophthalmitis was historically estimated to be 28–45% 
of hospitalized patients with candidemia (Parke et al. 
1982). More recently stricter criteria for diagnosis and 
early treatment of candidemic patients with antifungal 
agents have brought the incidence down; now estimated 
to be 1–3% (Rodriguez-Adrian et al. 2003). Limited case 
series of endopthalmitis attributable to C. tropicalis had 
a reported incidence of 2–45% in fungemic patients 
(Feman et al. 2002) but predisposition to endophthalmi-
tis by any particular Candida species is not thought to 
have increased.

Chronic disseminated candidiasis (CDC) represents a 
distinct form of disseminated Candida infection with pre-
dominant involvement of the liver, spleen and occasion-
ally kidney (Figure 5). This entity occurs in the setting of 
leukemic patients with neutropenia from chemotherapy. 
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Though this specific immunocompromised group of 
patients is particularly associated with predisposition to 
C. tropicalis as discussed above, the predominant Candida 
species implicated in CDC patients seems proportional to 
the local Candida BSI epidemiology as per institution/
country (Chen et al. 2003; Masood et al. 2005).

Dermatological manifestations of disseminated can-
didiasis caused by C. tropicalis occur with symptoms 
varying from papular nodular eruptions to necrotic skin 
lesions (Fraser et al. 1992; Wolfson et al. 1985) in most 
cases it is possible reach a diagnosis by histology and 
culture of the lesion (Figure 6).

C. tropicalis and nosocomial infection

It has been suggested that there is a potential for cross-
transmission of C. tropicalis between health-care work-
ers and patients. In experimental studies with human 
volunteers it was demonstrated that C. tropicalis was 
able to survive on the hands and inanimate surfaces for 
up to 24 hours. Transmission was also demonstrated 
from one hand to a second (69%) and a second hand to 
a third (38%) (Rangel-Frausto et al. 1994). Nosocomial 
clustering of C. tropicalis candidemia have been docu-
mented by genotyping (Chai et al. 2007; Asmundsdottir 
et al. 2008). Nosocomial C. tropicalis candiduria within 
an intensive care unit had also been attributed epi-
demiologically to environmental contamination from 
improper disposal of medical waste (Jang et al. 2005). 
Within neonatal/pediatric intensive care units, out-
breaks of C. tropicalis bloodstream infections have been 
a cause for concern (Roilides et al. 2003;Roilides et al. 
2004; Chowdhary et al. 2003). The tightening of infection 
control practices in some cases contained the outbreaks. 
These data clearly suggest the potential for transmission 
of C. tropicalis within the hospital environment.

Molecular epidemiology

Strain identification and genetic diversity are vital for 
understanding the epidemiologic aspects of nosocomial 
Candidal infection (Kleinegger et al. 1996), acquisition 
and nosocomial transmission (Burnie et al. 1985). Strain 
categorization may help in evaluating mechanisms of 
infection, whether re-infection or relapse and the devel-
opment of antifungal resistance (Espinel-Ingroff et al. 
1996; Pfaller et al. 1994).

PCR-based typing methodologies for C. tropicalis are 
available. For instance random amplified polymorphic 
DNA (RAPD) (Steffan et al. 1997; Lin et al. 1995) has 
been used in many studies but reproducibility (both 
between and within laboratories) is lacking. Variations 
in the banding pattern generated have been caused by 
a multitude of factors including primer-to-template 
concentration and replication conditions. Pulsed-field 
gel electrophoresis (PFGE) allows typing of C. tropi-
calis by electrophoretic karyotyping (Espinel-Ingroff 
et al. 1996; Doebbeling et al. 1993). However many of 
the chromosomes of C. tropicalis are of similar size 
and appear as a large complex band (Espinel-Ingroff 
et al. 1999) with poor resolution. PFGE typing can be 
improved if DNA is treated with certain cutting restric-
tion endonucleases: Espinel-Ingroff et al. (Espinel-
Ingroff et al. 1999) used C. tropicalis DNA treated with 
either Sfi I or BssHII endonucleases before PFGE. The 
fingerprints were reproducible and discriminatory 
between strains. RFLP-PFGE is a reliable tool to study 

Figure 5. Chronic disseminated candidiasis with multiple hypodense 
lesions in liver and spleen.

A

B

Figure 6. (A) Cutaneous papular eruptions in patient with dissemi-
nated candidemia. (B) Biopsy of skin lesion showing yeast cells and 
numerous pseuohyphae in tissue. GMS stain x250.
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strain-to-strain variations in epidemiologic evaluations 
of C. tropicalis.

Multi-locus sequence typing (MLST), a technique in 
which the sequences of housekeeping gene fragments 
are compared is now available for C. tropicalis. using 
genes ICL1, MDR1, SAPT2, SAPT4, XYR1, and ZWF1a.
(Chou et al. 2007) Following sequencing, data may be 
submitted using mlstdbNet software (http://pubmlst.
org/ ctropicalis/ ) to assist in typing and defining the 
global epidemiology of C. tropicalis. This scheme dem-
onstrated that C. tropicalis isolates can be grouped into 
clades based on diploid sequence types (DST). Diversity 
of the DSTs is greater than was encountered in C. albicans 
and C. glabrata.

Antifungal susceptibility testing

Currently the methodology most widely used as a refer-
ence standard is based on the Clinical and Laboratory 
Standards Institute (CLSI) [ex-National Committee 
on Clinical Laboratory Standards] document M27-A3 
on broth dilution antifungal susceptibility testing of 
yeasts. This is complemented more recently by the 
European Committee for Standardisation of Antibiotic 
Susceptibility Testing (AFST-EUCAST) (Cuenca-Estrella 
et al. 2003) in its reference document. These procedures 
are intended to provide high levels of standardization 
and reproducibility in antifungal susceptibility testing 
but there remain limitations. These include the trailing 
growth phenomenon, unreliable detection of ampho-
tericin B resistance, and subjective determination of 
endpoints (Cuenca-Estrella et al. 2002). C. tropicalis, in 
particular, exhibits the lack of a clear endpoint in micro-
well MIC determination (the presence of a trailing end-
point phenomenon) which occurs in 30–59% of isolates 
(Arthington-Skaggs et al. 2002). C. tropicalis exhibits a 
relatively lower level of agreement between the CLSI 
and EUCAST procedures amongst the Candida species. 
Reduction in the incubation period from 48 to 24 hours 
incubation does reduce the trailing growth phenomenon 
but there are concerns about accuracy at 24 hours using 
CLSI guidelines (Espinel-Ingroff et al. 2009). In vivo stud-
ies in murine models of disseminated candidiasis have 
shown that isolates exhibiting trailing endpoints with 
azoles should be regarded as susceptible rather than 
resistant (Warn et al. 2000). This is supported by clini-
cal studies of oropharyngeal candidiasis due to strains 
with trailing growth responding to low dose fluconazole 
(similar to those used to treat typical strains) (Revankar 
et al. 1998).

Agar-based disk diffusion method and E-test are alter-
natives to the reference methods of susceptibility testing 
of yeasts including C. tropicalis (Chryssanthou 2001; 
Alexander et al. 2007). These procedures are relatively 

straightforward and offer a practical alternative for the 
busy hospital laboratory. Overall agreement with the refer-
ence methods for Candida species is in excess of 80% with 
fluconazole (Chryssanthou et al. 2002; Simor et al. 1997).

Breakpoints

Breakpoints established by the CLSI for some of the 
antifungal agents in common use are shown in Table 1. 
In contrast to the CLSI guidelines, the latest clinical 
breakpoint for fluconazole as defined by EUCAST for 
Candida species including C. tropicalis (with the excep-
tion of C.  glabrata and C. krusei) has been set at ≤2mg/L 
for susceptible strains with resistance at >4mg/L without 
the susceptible-dose dependent intermediate range as 
per CLSI (2008).

Fluconazole

C. tropicalis was for a long time regarded as a species 
largely susceptible to fluconazole and amphotericin B 
(>95–98%) but reports over the last ten years have shown 
development of resistance to fluconazole in some cent-
ers and clinical failure (in-vivo resistance) (Abi-Said et al. 
1997; Antoniadou et al. 2003). In virtually every instance 
in which resistant C. tropicalis has occurred the patient 
has been on fluconazole treatment (Law et al. 1994; Leroy 
et al. 2009) and therefore assumed that resistant strains 
probably do not spontaneously occur without drug pres-
sure (Rex et al. 1995b). Development of resistance to flu-
conazole is particularly seen in AIDS, intensive care and 
leukemia patients (Law et al. 1994) but is rare in other 
cases. In-vitro resistance to fluconazole has been associ-
ated with a worse prognosis and increased mortality (Law 
et al. 1994; Rex et al. 1995b; Bille et al. 1997). The reason 
for this rapid increase in resistance is unknown but a 
variety of mechanisms of resistance have been identified 
from individual isolates.

The susceptibility of more than 1,000 C. tropicalis 
isolates to fluconazole as determined by CLSI (S) MIC 
≤ 8 μg/ml (broth microdilution method) is ≥ 98% in an 
international surveillance program (Pfaller et al. 2006), 
though the MIC

90
 (overall MIC at which 90% of isolates are 

inhibited) is higher in C. tropicalis (2 μg/ml) than C. albi-
cans (0.5 μg/ml). Absolute resistance to fluconazole, 

Table 1. Breakpoints established by CLSI for some of the antifungal 
agents in common use (all values in mg/L) against Candida spp.

 Susceptible
Susceptible-dose 

dependent Resistant

Fluconazole ≤ 8.0 16-32 ≥ 64

Itraconazole ≤ 0.125 0.25-0.5 ≥ 1

Flucytosine ≤ 4.0 8-16 ≥ 32

Amphotericin B None given None given None given

Ketoconazole None given None given None given

http://pubmlst.org/ ctropicalis/
http://pubmlst.org/ ctropicalis/
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designated as MIC ≥64 μg/ml, has remained infrequent 
at ≤3% worldwide for C. tropicalis. Nonetheless, it is nota-
ble that a recent Asian national anti-fungal surveillance 
program reported an increasing rate of reduced suscep-
tibility to fluconazole in C. tropicalis isolates exhibiting 
the trailing phenomenon (Yang et al. 2008).

Limited specific information is available about the 
molecular mechanisms of resistance to azoles in C. tropi-
calis but the mechanisms are likely to be similar to those 
identified in other Candida species. Two major mecha-
nisms of azole resistance are generally recognized: one 
involves mutations in the gene (ERG11) encoding 14-α-
demethylase, a target enzyme; and the second involving 
multidrug efflux transporters encoded by MDR/CDR 
genes (Casalinuovo et al. 2004). There has been a sin-
gle report identifying overexpression of CtERG11 and 
a missense mutation in this gene being responsible for 
acquired azole resistance in C. tropicalis (Vandeputte 
et al. 2005). A recently described efflux pump inhibitor 
MC-510,027 which specifically inhibits the activity of 
the MDR pumps (encoded by CDR genes) has also been 
shown to reverse C. tropicalis resistance to both flucona-
zole and itraconazole (Wise 2001), reducing the MIC to 
fluconazole from >128 to 1 μg/ml and itraconazole from 
>8 to 0.008 μg/ml. Experimentally induced fluconazole 
resistance has been generated in C. tropicalis (Barchiesi 
et al. 2000) with a single sub-culture in azole-containing 
medium. The strains were cross-resistant to itracona-
zole and terbinafine but gradually lost their resistant 
phenotype on serial passage in drug free medium. The 
azole-resistant isolates revealed upregulation of the two 
different multidrug efflux transporter genes: the major 
facilitator gene MDR1 and the ATP-binding cassette 
transporter gene CDR1.

Itraconazole

Itraconazole is also active against most isolates of C. trop-
icalis but with MICs ten times lower than fluconazole. 
High level resistance in C. tropicalis to itraconazole is 
rare but strains with reduced susceptibility to fluconazole 
require higher inhibitory concentrations of itraconazole 
due to cross resistance and therefore patients will require 
higher doses for treatment, with possible sub-optimal 
response to itraconazole (Johnson et al. 1995; Barchiesi 
et al. 1994). Recent studies have demonstrated that paral-
lel increases in both itraconazole and fluconazole MICs 
can be correlated to increases in multidrug efflux trans-
porters (CtMDR1 and CDR1) (Barchiesi et al. 2000).

Extended-spectrum triazoles

Voriconazole is highly active against C. tropicalis; for 
susceptible strains it was significantly more potent than 
itraconazole and ketoconazole with MICs up to 10 times 

lower (Dannaoui et al. 2009). As seen with itraconazole 
and ketoconazole, strains with higher fluconazole MICs 
also tend to have much higher voriconazole MICs sug-
gesting cross-resistance which probably results from 
similar mechanisms of action of these agents (Nguyen 
et al. 1998; Barchiesi et al. 1994). Posaconazole is also 
highly active against C. tropicalis with MICs approxi-
mately equivalent to itraconazole and nearly ten times 
lower than fluconazole (Pfaller et al. 1997; Laverdiere 
et al. 2002). It is also an option in HIV-infected subjects 
with azole-refractory oropharyngeal and oesophageal 
candidiasis (Skiest et al. 2007). Nonetheless, it is most 
efficacious as a potent broad spectrum triazole reserved 
for life-threatening fungal infections refractory to first 
line therapies (Torres et al. 2005). As seen with itracona-
zole, ketoconazole and voriconazole strains with raised 
MICs to fluconazole also appear to be less susceptible to 
posaconazole (Pfaller et al. 1997). This high-level azole 
cross-resistance has only been seen with C. albicans and 
C. tropicalis. Ravuconazole and isavuconazole has similar 
high activity against C. tropicalis, MICs being about a fifth 
those of itraconazole (approximately the same level of 
activity as voriconazole) (Laverdiere et al. 2002; Majithiya 
et al. 2009).

Amphotericin B

Amphotericin B had been the mainstay of antifungal ther-
apy for many years. It has a relatively broad spectrum of 
action: resistance (MIC > 2μg/ml) is rare and tends to be 
species-specific (Ellis 2002). Nonetheless, intolerance of 
amphotericin B deoxycholate infusion and nephrotoxic-
ity are well described (Pfaller et al. 2007a; Herbrecht et al. 
2002). Lipid-associated formulations are available with 
fewer side effects. Resistance of C. tropicalis to amphoter-
icin B is rare and few strains have reliably demonstrated 
high-level resistance to this agent (Rex et al. 1995a; Warn 
et al. 2002).

Flucytosine (5FC)

Currently approximately 5% of naïve C. tropicalis isolates 
are resistant to 5FC. Resistance had been reported to 
develop rapidly during therapy with up to 58% of strains 
resistant in some centers (Fleck et al. 2007). 5FC should 
be preferably be used in combination therapy with other 
antifungals and not as a single agent.

Echinocandins

The echinocandins are non-competitive inhibitors of 
cell wall (1-3)-ß-D-glucan synthase complex. There are 
three echinocandin agents in clinical use – caspofungin, 
micafungin, and anidulafungin. The mechanism of activ-
ity of the echinocandins against Candida is predominantly 
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fungicidal.(Espinel-Ingroff 1998) Due to this different 
mode of action, cross-resistance with triazoles and the 
polyenes is unlikely (Pfaller et al. 2003). Caspofungin has 
demonstrated good efficacy against oropharyngeal and 
oesophageal candidiasis in adults (Arathoon et al. 2002) 
and also demonstrated good activity against invasive can-
didiasis (Zaas et al. 2006). In vitro susceptibilities dem-
onstrate low MICs in the range 0.03-0.5 μg/ml (Roling 
et al. 2002). Recently though, a caspofungin-resistant 
strain of C. tropicalis has been reported (Pasquale et al. 
2008). Micafungin has demonstrated efficacy comparable 
to amphotericin B and little toxicity (Kuse et al. 2007). 
In vitro susceptibilities demonstrate micafungin MICs for 
C. tropicalis 10 times lower than caspofungin (Mikamo 
et al. 2000). Anidulafungin demonstrates similar efficacy 
to caspofungin and micafungin (MIC range 0.015–0.5 μg/
ml).(de la et al. 2007) Clinical response of C. tropicalis 
infections to anidulafungin was significantly better than 
that to fluconazole in a recent randomized study (p = 0.04) 
(Torre et. al. 2007). Aminocandin is a new member of the 
echinocandins that is currently in phase I/II development 
that has demonstrated excellent in vivo activity in murine 
models of fluconazole-resistant C. tropicalis (Warn et al. 
2005).

Summary on treatment of C. tropicalis 
candidiasis

Numerous consensus guidelines for the treatment of can-
didiasis are available. None distinguish the treatment of 
C. tropicalis infections from other Candida species (Slavin 
et al. 2004; Denning et al. 2003; Pappas et al. 2004; Pappas 
et al. 2009). Until recently, most studies did not report the 
outcomes by individual species of Candida. In Table 2 
we have tabulated those that are available in major trials 
involving invasive candidiasis; and as illustrated, due to 
the localities where some of these trials were conducted, 
C. tropicalis candidemia may constitute less than 10% of 
the cases enrolled and the reader will need to be mindful 
interpreting outcomes of such occasional under-sized 
cohorts. Differences in response rates between these trials 
are as dictated by the individual trial protocols. Generally, 
C. tropicalis follows a similar response to the respective 
therapeutic interventions as C. albicans with the statistical 
design of these trials intended as non-inferiority studies. 
Satisfactory therapeutic responses have been demon-
strated with amphotericin B, fluconazole (intravenous/
oral), extended spectrum triazoles and the echinocandins. 
An exception worth mentioning though is the voricona-
zole versus amphotericin/fluconazole trial (Kullberg et al. 
2005) in which saw a much higher response rate of C. trop-
icalis in the voriconazole treatment group (32%) than the 
amphotercin/fluconazole group (6%) though the infecting 
strains were susceptible to all trial drugs. The authors were 

unable to account for this disparity beyond attributing this 
to the small sample size. The recent IDSA update of 2009 
(Pappas et al. 2009) highlights the prevention of invasive 
candidiasis in high-risk neonates and adults and provides 
guidelines on the empiric treatment of suspected invasive 
candidiasis in adults.

Over the last 3 years, sufficient data has been gener-
ated from large randomized controlled trials to make 
tentative conclusions about the treatment of invasive 
C. tropicalis infections, including candidemia. Treatment 
options for C. tropicalis invasive candidiasis are as sum-
marized in Table 3. Amphotericin B preparations or 
an echinocandin are effective treatments for primary 
C. tropicalis candidiasis. Likewise voriconazole is also 
effective therapy, but has other limitations in acutely ill 
patients. Liposomal amphotericin is substantially less 
toxic than deoxycholate amphotericin B. There appears 
to be no difference in outcome in C. tropicalis infections 
between the 3 licensed echinocandins, and the doses 
studied in the randomized controlled studies appear 
sufficient for good results (Table 2).

Removal or change of appropriate intravascular 
catheter remains an integral component of candidemia 
treatment which should not be overlooked. Ophthalmic 
assessment for endophthalmitis is also recommended. 
Vitrectomy with topical intra-vitreal antifungal admin-
istration needs to be considered in Candida endop-
thalmitis on top of systemic antifungal treatment. Repeat 
blood cultures to document clearance of C. tropicalis 
fungemia is also advisable. Once the patient is stable, 
and has responded, and the susceptibility of the isolate 
to fluconazole confirmed, a switch to fluconazole may 
be made. Duration of therapy should last for 14 days 
after the last negative culture accompanied by clinical 
improvement.

Conclusions

C. tropicalis accounts for a significant proportion of 
Candida bloodstream isolates in tropical regions and is 
implicated much more frequently in infections of cancer 
patients. Mortality associated with C. tropicalis fungae-
mia can be high though this may inherently be attribut-
able to the more severely ill patient cohort at-risk. Naïve 
C. tropicalis appear to be susceptible to a wide range 
of antifungal agents and intrinsic resistance is rare or 
absent. The development of resistance to fluconazole 
often causes cross-resistance to the whole triazole group 
of antifungal drugs (including the new broad-spectrum 
triazoles).

Early diagnosis and prompt initiation of appropri-
ate antifungal therapy will hopefully help to reduce the 
morbidity and mortality associated with C. tropicalis 
infections.
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