Candida glabrata Stell is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence

ANA-MARIA CALCAGNO*:, ELAINE BIGNELL*, THOMAS R. ROGERS*, MICHAEL D. JONES*, FRITZ A. MÜHLSCHLEGEL† & KEN HAYNES*

*Department of Infectious Diseases, Imperial College London, London, UK and †Research School of Biosciences, University of Kent, Canterbury, UK and Center of Microbiology and Cell Biology, Venezuelan Institute for Scientific Research, Caracas, Venezuela

> The conserved family of fungal Ste11 mitogen activated protein kinase/kinases play important roles in several signalling cascades. We have cloned the STE11 homologue from the fungal pathogen Candida glabrata. The C. glabrata gene is present in a single copy in the genome, contains a well-conserved catalytic domain typical of the serine-threonine protein kinases and a sterile alpha motif widespread in signalling and nuclear proteins. Hypothetical translation of C. glabrata STE11 suggests that the protein has 64% identity and 77% similarity at the amino acid level to Saccharomyces cerevisiae Stell. We have shown that C. glabrata STEll can complement the mating defect and partially rescue the reduced nitrogen starvation induced filamentation of S. cerevisiae stell mutants. Functional analysis of a C. glabrata stell null mutant demonstrates that Stell is required for adaptation to hypertonic stress but is largely dispensable for maintenance of cell wall integrity. It also plays a role in C. glabrata nitrogen starvation induced filamentation. Survival analysis revealed that C. glabrata stell mutants, while still able to cause disease, are attenuated for virulence compared to reconstituted, STE11 cells. These data suggest that C. glabrata Ste11, in a similar fashion to the S. cerevisiae protein, functions in a number of different signalling modules.

> **Keywords** Candida glabrata, filamentation, hypertonic stress, STE11, virulence

Introduction

A number of Candida species, in particular Candida albicans are life threatening opportunistic pathogens of humans [1]. They are able to induce disease in hosts, whose systemic or local immune status is damaged, deteriorating or innately dysfunctional [2]. Candida glabrata has been documented as a cause of both superficial infections, including vaginitis, and systemic disease where it is emerging as a significant

Received 1 March 2004; Accepted 7 July 2004

pathogen [3]. In the US, 45% of Candida species isolated from the blood stream are now members of the genus other than C. albicans, in particular C. glabrata is currently res-ponsible for approximately one in five cases [4]. C. glabrata is inherently less susceptible than other Candida species to currently available azole antifungals and C. glabrata infection is also associated with a high mortality [5].

This emergence of C. glabrata as an important cause of candidaemia represents an increasing clinical problem that requires immediate action. Improvement of our understanding of the biology that determines C. glabrata pathogenicity should facilitate the tackling of this problem. It seems reasonable to hypothesize that a key attribute for many fungal pathogens, including C. glabrata, is an ability to sense and respond

Correspondence: Ken Havnes, Department of Infectious Diseases, Imperial College London, Du Cane Road, London W12 ONN, UK. Tel: +44 (0)20 8383 1245; Fax: +44 (0)20 8383 3394; E-mail: k.haynes@imperial.ac.uk

to changes in the external environment. A central component of a number of signal transduction pathways that sense environmental changes in fungi is a mitogen activated protein kinase (MAPK) cascade module [6]. These modules are highly conserved in eukaryotic organisms and comprise three core protein kinases (i.e. a MAPK, a MAPK kinase [MAPKK] and a MAPKK kinase [MAPKKK]) [7]. In Saccharomyces cerevisiae, five MAPK cascades have been associated with biological responses to specific external stimuli [6]. The mating pathway is activated by pheromones and induces cell-cycle arrest and morphological changes required for mating [8]. The invasive growth pathway is activated by nitrogen starvation and induces filamentous growth and invasion into agar [9]. The putative STE vegetative growth pathway helps to mediate cell wall integrity in response to osmotic stress [10,11]. The high osmolarity glycerol (HOG) pathway increases intracellular glycerol levels in response to hypertonic stress [12]. The cell integrity pathway acts to maintain cell wall integrity and is activated by hypotonic stress, heat shock and nutrient depletion [13]. The first four of these signalling pathways share a common MAPKKK (i.e. Ste11).

Homologues of S. cerevisiae STE11 have been described in a number of other fungal species. These include Aspergillus nidulans SteC (accession number CAD44493), C. albicans STE11 (CandidaDB [http://genolist.pasteur.fr/CandidaDB] accession number CA2018), Cryptococcus neoformans STE11 α [14], Neurospora crassa nrc-1 [15], Schizosaccharomyces pombe byr2/ste8 [16] and Ustilago maydis ubc4 [17]. This Ste11 family of proteins play important roles in mediating the

regulation of various aspects of morphogenesis, sporulation, conjugation, mating and pathogenicity.

We have cloned the *C. glabrata STE11* homologue in order to begin an analysis of MAPK signalling in this opportunistic pathogenic yeast. Here, we show that inactivation of *C. glabrata STE11* results in defective adaptation to hypertonic stress and reduced ability to filament in response to nitrogen starvation. In addition *C. glabrata ste11* mutants are mildly attenuated in a murine model of candidiasis.

Materials and methods

Strains and growth media

All the strains used in this study are listed in Table 1. Fungal cells were routinely cultured in YAPD (2% w/v peptone, 2% w/v glucose, 1% w/v yeast extract, 0.01% w/v adenine) or SD (0.17% w/v yeast nitrogen base without amino acids; Difco, Detroit, MI, USA); 2% w/v glucose and appropriate drop out mix (Clontech, Basingstoke, UK) at 30 or 37°C. For solid media 2% w/v agar was added prior to autoclaving. Synthetic low ammonia (10 μ mol/l) dextrose (SLAD) media for nitrogen starvation experiments was prepared as previously described [18]. Other additives were filter sterilized and added at the appropriate concentration to media after autoclaving. *Escherichia coli* XL1-blue (Stratagene, La Jolla, CA, USA) was used as the host strain for all plasmid manipulations.

Cloning of C. glabrata STELI

Degenerate primers FD-11 (YTNGARTAYGTNCCN GGNGG) and RD-11 (ACNACYTCNGGNSHCAT

 Table 1
 Fungal strains used in this study

Strain	Genotype	Reference
Candida glabrata ATCC 2001	Wild type	ATCC*
C. glabrata Δ HT6	his3::URA3 Aura3 Atrp1	19
C. glabrata AM3	his3::URA3 Δura3 Δtrp1 ste11::HIS3	this study
C. glabrata AM3p	his3::URA3 Aura3 Atrp1 stel1::HIS3 pCgACT-14 (TRP1)	this study
C. glabrata AM5	his3::URA3 Aura3 Atrp1 stel1::HIS3 pAMC76 (STE11 TRP1)	this study
Saccharomyces cerevisiae L5366	ura3/ura3	FLC†
S. cerevisiae L5625	ura3/ura3 ste11/ste11	FLC†
S. cerevisiae AM10	ura3/ura3 YEp24 (URA3)	this study
S. cerevisiae AM11	ura3/ura3 ste11/ste11 YEp24 (URA3)	this study
S. cerevisiae AM12	ura3/ura3 ste11/ste11 pAMC44 (CgSTE11 URA3)‡	this study
S. cerevisiae Y15271	MATa his3 leu2 lys2 ura3 ste11::kanMx4	Euroscarf§
S. cerevisiae AM13	MATa his3 leu2 lys2 ura3 ste11::kanMx4 YEp24 (URA3)	this study
S. cerevisiae AM14	MATa his3 leu2 lys2 ura3 ste11::kanMx4 pAMC44 (CgSTE11 URA3)‡	this study
S. cerevisiae X4003-Ba	MATa leu2 ade1 his4 met2 ura3 trp5 gal1	AFGLC

*American Type Culture Collection; †Fink Laboratory Collection; $\ddagger Cg$ is prefixed to differentiate the *C. glabrata* gene from the *S. cerevisiae* gene; §European *S. cerevisiae* archives for functional analysis; ¶Aberdeen Fungal Group Laboratory Collection.

CC) were designed against alignments of the conserved kinase domain of the Stel1 proteins from *S. cerevisiae*, *C. albicans, N. crassa and S. pombe.* All PCR reactions were performed on a PCR Engine (MJ Research, Watertown, MA, USA) in $1 \times PCR$ buffer (MBI, Vilnius, Lithuania) containing 1 U Taq polymerase and 100 ng *C. glabrata* ATCC 2001 genomic DNA. PCR conditions were 2 min at 94°C, then 25 cycles of 60 s at 94°C, 60 s at 45°C and 2 min at 72°C followed by a final extension step of 7 min at 72°C. The resulting PCR products were cloned into pGEM T-Easy (Promega, Southampton, UK) and sequenced. A 380-bp fragment showed significant sequence homology to fungal *STE11* genes.

A *C. glabrata* ATCC 2001 genomic DNA library constructed in YEp24 was a gift from Dominique Sanglard (CHUV, Lausanne, Switzerland). The 380-bp *STE11* PCR product was labelled with ³²P using Ready-to-Go beads (Amersham-Pharmacia, Chalfont, UK) and used to probe replicate filters of this library. Three positive colonies were identified that contained apparently identical YEp24 plasmids. The entire 6.0 kb insert of one of these plasmids (pAMC44) was sequenced on both strands at the Imperial College London sequencing facility using synthetic primers.

Disruption of C. glabrata STELL

In order to disrupt STE11, a 3.4 kb DraI fragment from pAMC44 (-733 to +2615, with respect to the STE11 start codon) containing the entire C. glabrata STE11 gene was subcloned into the SmaI site of pBluescript SKII+ to give the plasmid pAMC71. This was digested with BpiI and Eco721 to remove 2321 bp including the entire STE11 ORF (-148 to +2173). The digested plasmid was blunt ended and a C. glabrata HIS3 cassette was cloned in as previously described [19]. The resulting plasmid, pAMC60, was used as template for PCR with the primer pair FL4-STE11 (AGATATACTAGCTACGACCAGA, -633 to -655) and RL4-STE11 (ACAGATAGACAATTGAC GCC, +2563 to +2583) to generate a linear STE11 gene replacement cassette. This cassette was transformed into C. glabrata Δ HT6, using a lithium acetate protocol [19]. Histidine prototrophs were selected. Homologous integration and gene replacement were confirmed by Southern analysis and PCR (Fig. 1). A representative strain was selected and designated C. glabrata AM3 (his3::URA3 Δ ura3 Δ trp1 ste11::HIS3). This strain was made prototrophic by transformation with pCgACT-14 [20]. The resultant strain was designated C. glabrata AM3p.

Reconstitution of C. glabrata STEII

To reconstitute *STE11* in *C. glabrata* AM3 the entire *STE11* open reading frame was released from pAMC44 with *Dra*I. The resultant 3.4 kb *STE11* fragment was cloned into *Sac*I digested blunt ended pCgACT-14 [20], yielding pAMC76. *C. glabrata* AM3 was transformed with pAMC76. Trytophan prototrophs were selected. Reconstitution of *STE11* was confirmed by diagnostic PCR with the primer pair FL4-STE11 and RL4-STE11 (data not shown). A representative *STE11* reconstituted strain *C. glabrata* AM5 (*his3::URA3 \Deltaura3 \Deltatp1 ste11::HIS3* pAMC76 [*STE11*, *TRP1*]) was selected for further analysis.

Complementation of S. cerevisiae stell mutants

The diploid *S. cerevisiae stel1/stel1* mutant L5625 and the haploid *stel1* mutant Y15271 were both transformed with pAMC44. Uracil prototrophs were selected and episomal uptake of *C. glabrata STEl1* was confirmed by PCR with the primer pair FL4-STE11 and RL4-STE11 (data not shown). Representative transformants from each background were selected for further analysis and designated *S. cerevisiae* AM12 (*ura3/ura3 stel1/stel1* pAMC44 [*CgSTEl1 URA3*]) and *S. cerevisiae* AM14 (*MAT* α *his3 leu2 lys2 ura3 stel1::kanMx4* pAMC44 [*CgSTEl1 URA3*]). *Cg* is prefixed to *STEl1* here to avoid confusion between the *C. glabrata* and *S. cerevisiae* genes.

S. cerevisiae L5625 was also transformed with YE p24 to give the prototrophic *stel1/stel1* strain AM11. In addition *S. cerevisiae* L5366 (*ura3/ura3*) was transformed with YEp24 to give a prototrophic wild-type strain AM10.

Mating assays

To determine whether or not *C. glabrata* Stell could complement the mating defect of the haploid *S. cerevisiae stell* mutant Y15271 we performed a series of patch matings with the *MAT***a** strain X4003-5Ba (*MAT***a** leu2 adel his4 met2 ura3 trp5 gal1). This strain was crossed with Y15271, AM13 (*MAT* α his3 leu2 lys2 ura3 stel1::kanMx4 YEp24) and AM14. After 48 h at 30°C on YAPD portions of each patch were transferred to SC without histidine and incubated for a further 48 h at 30°C.

Model of systemic candidiasis

To compare the virulence of the wild-type strain *C. glabrata* ATCC 2001 and the *stel1* mutant *C. glabrata* AM3p we used a murine model of systemic candidiasis that we have recently developed [21].

Fig. 1 Disruption of *Candida glabrata STE11*. Schematic representation of the wild type *STE11* genomic locus showing position of diagnostic PCR primers (1F/1R and 2F/2R), *Avr*II recognition sequences and site of *HIS3* insertion in AM3 (A). *ste11* diagnostic PCRs (B). Genomic DNA from *C. glabrata* Δ HT6 (*STE11*) or AM3 (*ste11*) was amplified with the primer pairs 1F/1R and 2F/2R (see below for description). The expected ~3.2 kb fragment was amplified with primers 1F/1R from *C. glabrata* Δ HT6 and an ~800 bp smaller fragment was amplified from AM3, due to replacement of 2.3 kb of *STE11* with 1.5 kb of the *HIS3* cassette. No PCR product was obtained when DNA from *C. glabrata* Δ HT6 was amplified with the primers 2F/2R. A 1.7 kb fragment was obtained with AM3 DNA demonstrating homologous integration of the disruption cassette at the *STE11* genomic locus and inactivation of *STE11* in *C. glabrata* AM3. Primer 1F (AGATATACTAGCTA CGACCAGA) and 1R (ACAGATAGACAATTGACGCC) are contained on the *STE11* disruption cassette and amplify a fragment from -655 to +2583 with respect to the *STE11* start codon. Primer 2F (AGGATCTGATCTTGACAGAGA) is external to the disruption cassette (-849). Primer 2R (CGGGATCATCTTCTGTGGGATAGC) is on the *HIS3* marker. Confirmation of *STE11* disruption by Southern analysis (C). Total genomic DNA from *C. glabrata* Δ HT6 (*STE11*) or AM3 (*ste11*) was digested to completion with *Avr*II, separated on an agarose gel and transferred to nylon. *Avr*II recognition sequences are located at -1601 and +5089. The membrane was probed with a ³²P-labelled fragment of the *STE11* upstream region (see A), washed to high stringency and visualized with X-OMAT film (Kodak). The anticipated 6.7 kb *Avr*II fragment was seen in *C. glabrata* Δ HT6 and an ~800 bp smaller fragment was labelled in AM3 DNA. These data confirm the disruption of *STE11* in *C. glabrata* AM3.

Briefly, groups of 15 cyclophosphamide (200–250 mg/kg) immunosuppressed CD1 mice (25–28 g) mice were infected via the lateral tail vein with equivalent doses of the *C. glabrata STE11* reconstituted strain AM5 (6.2×10^7) or the *C. glabrata ste11* mutant AM3p (6.1×10^7). Mice were killed when the pre-determined end-point of 20% weight loss was reached. Survival curves were compared using Kaplan–Meier log rank analysis.

Results

C. glabrata STELL encodes a member of the fungal Stell protein family

PCR amplification with degenerate primers FD-11 and RD-11 yielded two amplicons of 850 and 380 bp,

respectively. Sequencing of these two products revealed that the 380 bp band had substantial similarity to a number of fungal *STE11* genes. Use of this PCR product to screen a *C. glabrata* genomic library in YEp24 yielded three independent clones each containing an apparently identical 6 kb insert. Sequence analysis of one of these clones (pAMC44) revealed the entire *C. glabrata STE11* open reading frame, plus regulatory sequences, with substantial sequence similarity to fungal *STE11* genes. We have designated this open reading frame *C. glabrata STE11*. The DNA sequence has been assigned the accession number AY603493.

The *C. glabrata STE11* gene contains a putative uninterrupted open reading frame of 2031 bp, with a conserved TATA element in the 5' untranslated region

60 bp upstream of the proposed initiation codon and a possible poly-adenylation signal sequence at position +2056 to +2062. The translated sequence is predicted to encode a protein of 676 amino acids with a molecular weight of 76.2 kDa. *C. glabrata* Stel1 has substantial amino acid sequence similarity to other members of the Stel1 protein family including *A. nidulans* SteC (33%), *C. albicans* Stel1 (35%), *C. neoformans* Stel1α (52%), *N. crassa* nrc-1 (34%),

S. cerevisiae Stel1 (64%) and *S. pombe byr2* (38%). This sequence homology is particularly striking in the highly conserved catalytic domain (Fig. 2) typical of the serine-threonine protein kinase family [22]. The *C. glabrata* Stel1 putative catalytic domain has the conserved boundaries and 11 subdomains characteristic of the family [23] (Fig. 2). The N-terminus of the protein contains a sterile alpha motif (SAM) widespread in signalling and nuclear proteins [24].

C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa S.pombe	CLKDARICSCSFGIVY GMNAQIGELMAVKOVEIKPAIAAT-ADANVEDKNAEKN ALKGARICSCSFGSVY GMNAHTGELMAVKOVEIKNNNIGV-PTDNNKQANSDENNEQEE ALKGARICSCSFGSVY GMNAHTGELMAVKOVEIKNNNIGV-PTDNNKQANSDENNEQEE ALKGARICSCSFGSVY GMNAKTGELMAVKOVEIKNNNIGV-PTDNNKQANSDENNEQEE ALKGARICSCSFGSVY GMDAQSCLLMAVKOVEIPSGNSDTENIQNSMQEQ ALKGALICAGSFGSVY GMDAQSCLLMAVKOVELSAGSAKNEDRK-RSMLSAL AHKGALICAGSFGSVY GMNAKTGLLMAVKOVELPSGDSHLDQRK-KGMLEAL AMKGSLICEGSFCSVF ALHSITGELMAVKOVEIPSGDSHLDQRK-KGMLEAL AMKGSLICEGSFCSVF ALHSITGELAVKOVEIPSATKGTEFDKRKNSMVEAL AMKGSLICEGSFCSVF ALHAITGELLAVKOVEIPSATKGTEFDKRKNSMVEAL	442 473 598 987 753 660 443 444
C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa S.pombe	VAKAPSTNLHRKMIDALQH MSILKE.QHENIVTYYGSSQEGGNLNIF QQEKIEDVGAVSHPKTNQ-NIHRKMVDALQH MNILKE HHENIVTYYGASQEGGNLNIF QRMMILKE HHENIVTYYGASQEGGNLNIF	490 532 629 1018 784 691 474 475
C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa S.pombe	LEYVPGGSVSSMI SNYGPFELET IVN TROLI I IVAYLERKNI HRDIRGANI HILIKGC LEYVPGGSVSSMI NNYGPFELSI ITN TROLI I IVAYLERKNI HRDIRGANI HILIKGC LEYVPGGSVSSMI NSYGPFELPI IRN VROVI I LSYLEGED HRDIKGANI HIDIKGT LEYVPGGSVAAL NNYGAFELA VRN VROVI I LSYLEGED HRDIKGANI LVONKGG LEYVPGGSTAAL NNYGAFELA VRN VROVI I TENYLEMRGIVIRDI KGANI LVONKGG LEYVPGGSTAAL NNYGAFELA VRN VROVI I TENYLEMRGIVIRDI KGANI LVONKGG LEYVPGGSTAAL NNYGAFELA VRN VROVI I ALSYLENGK MINDI KGANI LVONKGG LEYVPGGSTAAL NYGAFELA VROVI I ALSYLENG MINDI KGANI LVONKGG LEYVPGGSTAAL KOYNTO PI IKNEVROI ALSYLENGKI HIRDI KGANI VONKGT LEYVPGGSTAAL KOYNTO PI IKNEVROI ALSYLENGKI HRDI KGANI VONKGT LEYVPGGSVAGL TMYGSFELTIVKNI IKT KELEYLESRG VHRDI KGANI I VONKGK	550 592 689 1078 844 751 534 535
C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa S.pombe	VKUTDFGISKKLSPLNQENQDKTTSLQGSVY#SSPEVVKQTATTSA VKUTDFGISKLSPLNKK-QKK-ASLQGSVF#SPEVVKQTATTSA VKUSDFGISKVSAIDEEDEDFKKTGK-ASLQGSVF#APEVVKQTTYTKA IKUSDFGISKVENSLITGLRTNPSLQGSVF#APEVVKQTSYSPA IKUSDFGISKVENSLI	597 638 741 1126 904 806 585 584
C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa S.pombe	DIWST CVVIEFTGKHYPDFS MOAL KIG-TNVT EITSWASPOGRDEIRKT ELDY DIWST CVVIEFTGKHIFPDFS MOAL KIG-TNTT EITSWATSEGKNELRKAELDY DIWSV GLIVGEFTGRHFPDFS MOAL KIG-TNTT EITSWATSEGKNELRKAELDY DIWSV GLIVGEFTGRHFPDFS MOAL KIG-NHIT QI EEKTNEAKEGLKKT EINF DIWSVGLVVENLTGTHWADLT MOAL RIG-SLAR APISDISVOADELRKT EINF DIWSLGLVVENISGTHWAELN MOAL Q.CMGRKESL DEISNECRD LEKTFELDY DIWSLGLVVENIGTHFPDCS LUAIRKG SNKAR PADEHASKDAVALDMT QLDH DIWSLGLVVENTGTHFPDCTCLUAIRKG GSKASTIEDNASEBAKQELAQTEDH DIWSLGLVVENTGTHFPDCTCLUAIRKG GSKASTIEDNASEBAKQELAQTEDH DIWSLGLVVENTGTHFPDCTCLUAIRKG SNISSSAIDELEKTEAIDC IX X	656 697 800 1185 963 866 645 643
C.glabrata S.cerevisiae C.albicans C.neoformans U.maydis A.nidulans N.crassa	QRKITAIELQESWLESHII 676 QYRISALELQHPWLDAHII 717 EMKIDOIELAEQFLNPLIMSKQ 823 AKRITAQULKHPFIGSPRVRTAASNFINGAIASE 1230 NNKFS2DELNHAFMGTEMTFPPSSGADGSGGGDD 998 EKRIDADELKSPFLATTLT 886 NKRISADE MLSPFLTPVPGT 666	

Fig. 2 Candida glabrata STE11 encodes a member of the Ste11 family of MAP kinase kinase kinases. Alignment of the putative kinase domain of *C. glabrata* Ste11 with Ste11 proteins from Saccharomyces cerevisiae (Ste11), Candida albicans (Ste11), Cryptococcus neoformans (Ste11α), Ustilago maydis (ubc4), Aspergillus nidulans (SteC), Neurospora crassa (nrc-1) and Schizosaccharomyces pombe (byr2). The Roman numerals beneath the amino acid sequence indicate the 11 subdomains characteristic of the Ste11 family while the Arabic numerals to the sides of the sequence indicate relative amino acid numbers.

© 2005 ISHAM, Medical Mycology, 43, 355-364

Southern analysis revealed that the *STE11* gene is present in a single copy in the *C. glabrata* genome (data not shown). In addition, interrogation of the *C. glabrata* proteome (http://cbi.labri.fr/Genolevures/C_glabrata.php) revealed a single Ste11 homologue (CAGL CDS1172.1).

C. glabrata STELL *is a partial functional homologue of* S. cerevisiae STELL

The ability of the product of C. glabrata STE11 to complement the nitrogen starvation-induced filamentation defect of diploid S. cerevisiae stell/stell mutants was investigated. The extent of filamentation was gauged semi-quantitatively using the criteria developed by O'Rourke and Herskowitz [25]. The S. cerevisiae stell/stell diploid strain L5625 had 66% (n=200) robustly filamenting colonies when cultured on SLAD for 96 h at 30°C; the remaining 34% exhibited weak filamentation. Wild-type AM10 colonies showed 100% (n=200) with profuse filamentation. Transformation of S. cerevisiae L5625 with the C. glabrata STE11 containing plasmid pAMC44 resulted in partial complementation of the nitrogen starvation-induced filamentation defect seen in this strain, as 93% (n = 200) of colonies exhibited profuse filamentation. C. glabrata Stell was also able to reverse the mating defect of the haploid S. cerevisiae stell null mutant Y15271 (Fig. 3). C. glabrata STE11 was unable to complement the SDS and calcofluor white defective growth phenotypes of S. cerevisiae L5625 (data not shown). Taken together these data demonstrate that C. glabrata STE11, in addition to having sequence homology to STE11, encodes a protein that can complement some, but not all, of the phenotypes associated with loss of STE11 in

Fig. 3 Candida glabrata Stell complements the mating defect of *S. cerevisiae stell* mutants. Haploid *S. cerevisiae* Y15271 (*MAT* α stell), AM13 (*MAT* α stell YEp24) and AM14 (*MAT* α stell pAMC44 (*CgSTE11 URA3*)) were patch mated with the *MAT***a** strain X4003-5Ba. After 48 h culture on YAPD the patches were transferred to SC without histidine and cultured for a further 48 h at 30°C. The left and right columns represent the parental strains as indicated and the centre column the products of mating.

S. cerevisiae. C. glabrata STE11 therefore encodes a partial functional homologue of S. cerevisiae Ste11.

C. glabrata STELL is partially required for nitrogen starvation induced filamentation

We have previously demonstrated that С. glabrata produces pseudohyphae, similar to diploid S. cerevisiae strains, in response to nitrogen starvation and that the transcription factor Ste12 is required for this response [18,21]. We therefore sought to determine whether or not C. glabrata Stell is also required for nitrogen-starvation-induced filamentation. The stell null mutant C. glabrata AM3p had a partial defect in filamentation on nitrogen starvation medium (Fig. 4). The filamentation response is restored to wild-type levels by reconstitution of C. glabrata STE11 (Fig. 4),

Fig. 4 Candida glabrata STE11 is only partially required for nitrogen starvation induced filamentation in *C. glabrata*. Wild-type (ATCC 2001), *ste11* (AM3p) and reconstituted STE11 (AM5) *C. glabrata* strains were cultured on SLAD medium for 8 days at 37°C. Representative colonies were viewed with a Leitz Laborlux 12 microscope using a $\times 10$ objective. Images were captured with a Nikon CoolPix digital camera and imported into Microsoft Word.

C. glabrata STELL is required for adaptation to hypertonic stress but dispensable for maintenance of cell wall integrity

The *C. glabrata stel1* strain AM3p is unable to grow under the tested hypertonic stress conditions (i.e. 1 mol/l sodium chloride or 1.5 mol/l sorbitol) but is largely insensitive to agents that interfere with cell wall integrity, showing only slightly reduced growth in the presence of SDS (Fig. 5). All these phenotypes could be restored to wild type levels by reintroduction of *C. glabrata STE11*, demonstrating that the observed phenotypes are due to *STE11* deletion and suggesting that *C. glabrata* Stel1 is involved in adaptation to hypertonic stress but is largely dispensable for the maintenance of cell wall integrity.

STELL is required for wild type levels of C. glabrata virulence

We have developed a model of murine candidiasis [21]. Briefly CD1 mice were immunosuppressed with 200–250 mg/kg cyclophosphamide, then infected with equivalent doses of *C. glabrata* cells by intravenous

injection into the lateral tail vein. We used this model to compare the virulence of *C. glabrata stel1* (AM3p) mutants and *STE11* (AM5) reconstituted cells. *C. glabrata stel1* cells were statistically significantly less able (P = 0.045; Kaplan-Meier log rank analysis) to cause disease than reconstituted *STE11* cells (Fig. 6). These data suggest that while still able to cause disease *stel1* mutants are mildly attenuated for virulence compared to *STE11* reconstituted strains.

Discussion

Stell proteins are conserved in many fungi. They are involved in the regulation of many cellular processes including mating, filamentation, adaptation to hypertonic stress, cell wall integrity, morphogenesis and virulence [6]. In *S. cerevisiae* Stell is a component of three relatively well defined signalling pathways that mediate mating, the hypertonic stress response and filamentous growth [6] and the less well characterized *STE* vegetative growth pathway which functions to promote cell wall integrity [10,11]. We have demonstrated that *C. glabrata* has a Stell homologue that can substitute for *S. cerevisiae* Stell in the yeast mating pathway, mediates adaptation to hypertonic stress and

Fig. 5 Stel1 plays an important role in adaptation of *Candida glabrata* to hypertonic stress but is largely dispensable for maintenance of cell wall integrity. *C. glabrata* wild type (ATCC 2001), *stel1* (AM3p) and reconstituted *STEl1* strains (AM5) were cultured on YAPD (A), YAPD plus 1 mol/l sodium chloride (B), YAPD plus 1.5 mol/l sorbitol (C), YAPD plus 1% (w/v) calcofluor white (D) and YAPD plus 0.15% (w/v) SDS (E) at 37° C for 48 h.

© 2005 ISHAM, Medical Mycology, 43, 355-364

Fig. 6 Candida glabrata stel1 mutants are mildly attenuated. Groups of 15 immunosuppressed CD1 mice were inoculated with equivalent doses (see text) of either the *C. glabrata STE11* reconstituted strain AM5 (solid line) or the stel1 null mutant AM3p (hatched line). Mice were killed when the pre-determined end-point of 20% weight loss was reached. Kaplan–Meier log rank analysis revealed that the survival curves were significantly different (P = 0.045) for the two groups.

plays a role in nitrogen starvation-induced filamentation. Thus our data support the view that *C. glabrata* Stell, in a similar fashion to *S. cerevisiae* Stell functions in a number of different signalling pathways.

The inability of C. glabrata stell mutants to grow in the presence of high concentrations of sorbitol or sodium chloride suggests that Stell is involved in a pathway analogous to the HOG MAPK cascade that mediates the hypertonic stress response in S. cerevisiae. Activation of the S. cerevisiae HOG pathway can be triggered by three different branches [26]. The first involves Sln1, Ypd1, Ssk1, and the Ssk2/Ssk22 kinases, while the second involves Sho1, a putative membrane osmosensor that is able to activate Pbs2 via Ste11 [27]. The third involves Msb2 and is partially redundant with the Sho1 branch [26]. The signals are thought to converge at the Pbs2 level, which phosphorylates and activates the stress-activated kinase Hog1. In S. cerevisiae the stell ssk2 ssk22 triple mutant cannot grow at high osmolarity. In this strain all the pathways that converge on Pbs2 are interrupted [27]. Interestingly in C. glabrata deletion of STE11 alone was sufficient to prevent growth at high osmolarity. This result suggests that the hypertonic stress response in C. glabrata is different from that in S. cerevisiae, with possibly only one pathway triggering the HOG response. We have obtained the sequence of C. glabrata HOG1 (B. Dujon and C. Hennequin, unpublished data) and the encoded protein has 86% similarity to S. cerevisiae Hog1. We are currently attempting to characterize the phosphorvlation state of Hog1 in wild type and C. glabrata stel1 null mutants in order to determine if this hypothesis is correct.

S. cerevisiae cell wall integrity is maintained in part by the STE vegetative pathway which is thought to sense changes in the integrity of the cell wall in a Och1/ Sho1 dependent manner resulting in the transmission of a signal, via Stell, that activates the transcription factor Ste12 and effects subsequent transcription of genes encoding proteins required for maintenance of cell wall integrity [10,11]. The integrity of the cell wall can be determined in straightforward plate assays using SDS or calcofluor white [28,29]. We have shown that C. glabrata stell mutants exhibit essentially wild type growth in the presence of either of these agents. In contrast S. cerevisiae stell mutants are unable to grow in the presence of either SDS or calcofluor white and C. glabrata STE11 is unable to rescue these defective growth phenotypes. These data suggest that C. glabrata cell wall integrity is maintained in a different manner to that in S. cerevisiae.

We have previously demonstrated that *C. glabrata* cells produce filaments in response to nitrogen starvation [18]. This filamentation response is lost in *stel2* mutants [21]. But *C. glabrata stel1* null mutants can still produce filaments, albeit in reduced numbers, in response to nitrogen starvation. These data strongly support the view that the nitrogen starvation signal in *C. glabrata* is transduced not only via Stel1 but also an independent, as yet uncharacterized, pathway both of which activate the transcription factor Stel2.

Our data lead us to conclude that C. glabrata Stell is involved in various signal transduction pathways similar to the situation in S. cerevisiae. In S. cerevisiae insulation between these pathways is maintained in a number of ways including protein-protein interactions [30]. It is possible that C. glabrata Stel1 may be insulated in a similar way. The N-terminus of C. glabrata Stell has an obvious SAM domain that mediates such connections [24]. In S. cerevisiae at least three proteins (Ste50, Ste5 and Ste20] interact with the N-terminus of Ste11 [31]. Interaction of Ste50 with Stell is required for modulation of Stell function during mating, filamentous growth and the Sho1dependent response to hyperosmolarity [32,33]. Ste5 is a scaffold protein that interacts with the N-terminal negative regulatory domain of Stel1 [34]. It is possible that the role of Ste5 may be not just to facilitate interactions between protein kinases of the MAPK cascade but also to directly regulate kinase activity. Ste20 directly phosphorylates Ste11 in vivo and in vitro on serine 302 and/or serine 306 plus threonine 307 [35]. These amino acids are conserved in the N-terminal regulatory domain of C. glabrata Stell at serines 258 and 262 plus threonine 263 respectively. They are also conserved in other organisms [7,35]. We are currently

constructing tagged alleles of *C. glabrata STE11* in order to conduct immunoprecipitation and phosphorylation studies with a view to determining how Ste11 function is regulated in this species.

The differences in the responses of *C. glabrata* and *S. cerevisiae* to external stimuli that trigger MAPK cascades suggest that although some of the components of these pathways have been conserved between the two yeast species they function in different ways. The elucidation of these differences may yield valuable information on how *C. glabrata* has evolved to survive in mammalian hosts and allowed it to emerge as an opportunist pathogen.

Acknowledgements

Financial support was provided by BBSRC (60/ P17835), Fungal Research Trust, CGD Research Trust (J4G/99/05) and DFG. We thank Al Brown, Kunido Kitada, Hans-Ulrich Mösch and Dominique Sanglard for strains and reagents. We particularly thank Christophe Hennequin, Bernard Dujon and Geraldine Butler for allowing us access to pre-publication data. We thank Phil Muckett for technical assistance.

References

- 1 Calderone RA. *Candida and Candidiasis*. Washington, DC: ASM Press, 2002.
- 2 Bodey GP. The epidemiology of *Candida glabrata* and *Candida albicans* fungemia in immunocompromised patients with cancer. *Am J Med* 2002; **112**: 380–385.
- 3 Hazen KC. New and emerging yeast pathogens. *Clin Microbiol Rev* 1995; **8**: 462–478.
- 4 Pfaller MA, Diekema DJ, Jones RN, *et al.* International surveillance of bloodstream infections due to *Candida* species: frequency of occurrence and *in vitro* susceptibilities to fluconazole, ravuconazole and voriconazole of isolates collected from 1997 through 1999 in the SENTRY Antimicrobial Surveillance Program. *J Clin Microbiol* 2001; **39**: 3254–3259.
- 5 Pfaller MA, Messer SA, Hollis RJ, *et al*. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of *Candida* species in the United States. *Diagn Microbiol Infect Dis* 1999; **33**: 217–222.
- 6 Xu JR. Map kinases in fungal pathogens. *Fungal Genet Biol* 2000; 31: 137–152.
- 7 Widmann C, Gibson S, Jarpe MB, Johson G. Mitogen-activacted protein kinase: conservation of a three-kinase module from yeast to human. *Physiol Rev* 1999; **79**: 143–180.
- 8 Roberts RL, Fink GR. Elements of a single MAP kinase cascade in *Saccharomyces cerevisiae* mediate two developmental programs in the same cell type: mating and invasive growth. *Genes Dev* 1994; 8: 2974–2985.
- 9 Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast *S. cerevisiae* lead to filamentous growth: regulation by starvation and RAS. *Cell* 1992; 68: 1077–1090.
- 10 Lee BA, Elion EA. The MAPKKK Stel1 regulates vegetative growth through a kinase cascade of shared signalling components. *Proc Natl Acad Sci USA* 1999; **96**: 12679–12684.
- © 2005 ISHAM, Medical Mycology, 43, 355-364

- 11 Cullen PJ, Schultz J, Horecka J, et al. Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 2000; 155: 1005–1018.
- 12 O'Rourke SM, Herskowitz I, O'Shea EK. Yeast go the whole HOG for the hyperosmotic response. *Trends Genet* 2002; **18**: 405–412.
- 13 Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in *Saccharomyces cerevisiae*. *Mol Microbiol* 1999; **32**: 671–680.
- 14 Clarke DM, Woodlee GL, McClelland CM, Seymour TS, Wickes BL. The *Cryptococcus neoformans STE11* a gene is similar to other fungal mitogen activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. *Mol Microbiol* 2001; **40**: 200–213.
- 15 Kothe GO, Free SJ. The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in *Neurospora crassa*. *Genetics* 1998; **149**: 117–130.
- 16 Styrkarsdottir U, Egel R, Nielsen O. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction. Mol Gen Genet 1992; 235: 122–130.
- 17 Andrews DL, Egan JD, Mayorga ME, Gold SE. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. *Mol Plant Microbe Interact* 2000; **13**: 781–786.
- 18 Csank C, Haynes K. *Candida glabrata* displays pseudohyphal growth. *FEMS Microbiol Lett* 2000; **189**: 115–120.
- 19 Weig M, Haynes K, Rogers TR, et al. A GAS-like gene family in the pathogenic fungus Candida glabrata. Microbiology 2001; 147: 2007–2019.
- 20 Kitada K, Yamaguchi E, Arisawa M. Isolation of a *Candida glabrata* centromere and its use in construction of plasmid vectors. *Gene* 1996; **175**: 105–108.
- 21 Calcagno A, Bignell E, Warn P, *et al. Candida glabrata STE12* is required for wild-type virulence and nitrogen starvation induced filamentation. *Mol Microbiol* 2003; **50**: 1309–1318.
- 22 Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. *Science* 1988; 241: 42–52.
- 23 Hanks SK, Quinn AM. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. *Meth Enzymol* 1991; 200: 38–62.
- 24 Schultz J, Ponting CP, Hofmann K, Bork P. SAM as a protein interaction domain involved in developmental regulation. *Protein Sci* 1997; 6: 249–253.
- 25 O'Rourke SM, Herskowitz I. The Hogl MAPK prevents cross talk between the HOG and pheromone response to MAPK pathways in *Saccharomyces cerevisiae*. *Genes Dev* 1998; **12**: 2874–2886.
- 26 O'Rourke SM, Herskowitz I. A third osmosensing branch in *Saccharomyces cerevisiae* requires the Msb2 protein and functions in parallel with the Sho1 branch. *Mol Cell Biol* 2002; **22**: 4739–4749.
- 27 Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Stel1p MAPKKK: scaffold role of Pbs2p MAPKK. *Science* 1997; **276**: 1702–1705.
- 28 Igual JC, Johnston AL, Johnston AH. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. *Fungal Genet Biol* 1996; **31**: 137–152.

- 29 Ram AF, Wolters A, Hoopen T, Klis FM. A new approach for isolating cell wall mutants in *Saccharomyces cerevisiae* by screening for hypersensitivity to calcofluor white. *Yeast* 1994; 10: 1019– 1030.
- 30 Harris K, Lamson RE, Nelson B, et al. Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway dedicated signalling proteins. *Curr Biol* 2001; 11: 1815– 1824.
- 31 Dohlman HG, Thorner JW. Regulation of G protein initiated signal transduction in yeast: paradigms and principles. *Ann Rev Biochem* 2001; 70: 703-754.
- 32 Xu G, Jansen G, Thomas DY, Hollenberg CP, Ramezani Rad M. Ste50p sustains mating pheromone-induced signal transduction in

the yeast *Saccharomyces cerevisiae*. *Mol Microbiol* 1996; **20**: 773–783.

- 33 Wu C, Leberer E, Thomas DY, Whiteway M. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in *Saccharomyces cerevisiae*. *Mol Biol Cell* 1999; **10**: 2425–2440.
- 34 Printen JA, Sprague Jnr GF. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. *Genetics* 1994; **138**: 609–619.
- 35 van Drogen F, O'Rourke SM, Stucke VM, et al. Phosphorylation of the MEKK Stel1p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr Biol 2000; 10: 630–639.