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Extracellular phospholipase production by environmental and clinical isolates of

Aspergillus fumigatus collected from several centres world-wide were compared.

All isolates produced extracellular phospholipases which included phospholipase C

and a phospholipid acyl hydrolase (phospholipase A and/or phospholipase B)

activity. Clinical isolates of A. fumigatus produced the largest zone sizes in a

diffusion assay and clinical isolates produced more extracellular phospholipase C

than environmental isolates. However, environmental isolates of A. fumigatus

showed increased acyl hydrolase activity compared to clinical isolates of A.

fumigatus. This study suggests that extracellular phospholipase C activity, but not

extracellular acyl hydrolase activity may be important in the pathogenicity of A.

fumigatus.

Introduction

Over the last two decades there has been a substantial

increase in the incidence of opportunistic infectious

disease caused by members of the genus Aspergillus [1�/

4]. Four species, A. fumigatus, A. flavus, A. terreus and

A. niger account for the vast majority of all infections,

with A. fumigatus accounting for around 90% of these

[3]. It is widely accepted that the pathogenic aspergilli

are likely to possess attributes that enable them to cause

disease in man and animals such as the ability to grow

at 378C and small spore size allowing penetration into

the alveoli [3,4]. Several factors have been proposed as

putative virulence determinants in A. fumigatus [5].

The ability of A. fumigatus conidia to bind several

matrix proteins, including laminin and fibrinogen has

been well documented [6�/10] and may play a role in the

establishment of infection although the specific adhesin

molecules have yet to be isolated.

A. fumigatus is known to produce a wide variety of

mycotoxins including gliotoxin and restrictocin [11�/

16]. The importance of these and other toxins is unclear

with respect to pathogenesis. Although both can be

detected during animal and human infection at levels

known to cause cellular damage in vitro [11,17�/19],

non-gliotoxin producing species of Aspergillus are

pathogenic and restrictocin null mutants cause similar

levels of mortality to wild-type strains in animal models

[20�/22].

The production of extracellular proteases has been

proposed by several authors as potential pathogenicity

determinants and a number of different endopeptidases

(including alkaline protease, metalloprotease and as-

partic protease) have been identified [4,23�/25]. Mu-

tants lacking the ability to produce one or more of

these proteases have little impact on mortality rates in

animal models [22,26�/29] although a role in allergy is

possible [30,31].

The production of extracellular phospholipases have

been shown to be important virulence determinants in

the pathogenesis of several bacterial infections includ-

ing those caused by Clostridium perfringens, Pseudo-

monas aeruginosa and Listeria monocytogenes [32,33].

Phospholipase B production by Candida albicans and

Cryptococcus neoformans have been correlated with

virulence [34�/37] and phospholipase B knockout
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mutants in C. albicans and C. neoformans shown to

have reduced pathogenicity in animal models [38,39].
Previously, using FAB�/MS (fast atom

bombardment�/mass spectroscopy) analysis of phos-

pholipid breakdown products from A. fumigatus

culture broths, we identified ions consistent with the

secretion of several phospholipase classes, including

phospholipase B and phospholipase C [40]. This

contrasts with C. albicans and C. neoformans which

only appear to secrete phospholipase B with additional
lysophatidylphopholipase and transacylase activities

[41�/43].

In this study we compared the extracellular phos-

pholipase activities of clinical and environmental iso-

lates of A. fumigatus and found significantly higher

levels of extracellular phospholipase C activity in

clinical A. fumigatus isolates.

Materials and methods

Storage and cultivation of isolates

Clinical and environmental isolates of A. fumigatus

were obtained from the Aspergillus culture collection

based at Hope Hospital, Salford, UK. These strains

include isolates from a number of centres from the UK,

USA and Europe.

Isolates were stored as conidial suspensions in 20%

(v/v) glycerol at �/808C until needed. Conidia for

inoculation of lipid media were obtained from cultures

grown on Sabouraud Dextrose agar at 378C for 48�/96
h by gentle agitation in PBS containing 0.01% (v/v)

Tween 80 and filtered through two layers of lens tissue.

Conidial suspensions were counted using a haemo-

cytometer and the concentration adjusted to 1�/107

conidia per ml. 1 ml of the conidial suspension was

inoculated into 250-ml Erlenmeyer flasks containing 49

ml filter sterilized (0.22 mm) 0.5% (w/v) soy bean

phospholipid supplemented with 1 ml Vogel salts [44].
Flasks were incubated at 378C with constant shaking

(200 r.p.m.) for 55 h and filtered through four layers of

sterile muslin. Supernatants were filter sterilized prior

to freezing at �/808C.

Phospholipase assays

Culture supernatants were removed from storage at �/

808C and thawed on ice prior to use in assays.

Estimates of total phospholipase activity were made

using an agar diffusion assay based on the cup plate

assay of Tseng and Bateman [45]. Wells (8 mm
diameter) were cut into 20-ml diffusion plates (0.5%

(w/v) soy bean phospholipid, 50 mmol/l CaCl2, 1% (w/

v) agar) using a sterile cork borer and 150 ml filter-

sterilized culture supernatant added. Plates were in-

cubated at 378C for 4 days and the diameters of any
zone of precipitation measured.

Culture supernatants were assayed for extracellular

phospholipase C, using the synthetic substrate p-

nitrophenyl phosphorylcholine, by monitoring the

liberation of nitrophenol as previously described [40].

Phospholipase A and B (phospholipid acyl hydrolase

activity) were measured using the synthetic substrate 4-

nitro-3-octanoyloxy benzoic acid (NOBA) according to
the method of Cho and Kezdy [46]. This method was

originally used to determine phospholipase A2 activity;

however, we have recently shown that it also acts as a

substrate for phospholipase B (unpublished observa-

tions). Therefore, this assay can be used to measure

total phospholipid acyl hydrolase activity (i.e. a com-

bination of both phospholipase A and B). Briefly

NOBA was added to assay buffer (10 mm Tris, 10
mmol/l CaCl2, 0.1 mol/l NaCl, pH 8.0) to a concentra-

tion of 1 mg/ml. Supernatant was mixed with the

substrate in a ratio of 1:60 before incubation at 378C.

The absorbance of the reaction mixture was monitored

periodically over time at 410 nm and the rate of

formation of the chromogenic reaction product 3-

hydroxy-4-nitrobenzoic acid determined. All strains

were analysed in duplicate with triplicate readings
made for each assay.

The protein concentration of the culture superna-

tants were estimated using the BCA protein assay kit

(Pierce, UK).

Statistical analysis of the data was performed using

the SPSS computer program using least significant

difference analysis. Correlations were performed using

Pearson’s coefficient of linear correlation.

Results

A total of 53 clinical and 11 environmental isolates of

A. fumigatus were tested for growth and production of

extracellular phospholipases on lipid medium (Table 1).

All isolates were able to grow to some degree in liquid

media with soy phospholipid as the sole carbon source;
however, environmental A. fumigatus isolates produced

significantly less biomass (P B/0.05) compared to

clinical isolates over the incubation period (Table 1).

In addition, four of the 11 environmental A. fumigatus

isolates were unable to clear the turbid phospholipid

media indicating residual phospholipid. Repeated sub-

culturing (four times) for two of these isolates did not

change the level of secreted phospholipases (results not
shown). The total zone sizes in the agar diffusion assay

ranged from 15.1 to 35.1 mm with each zone consisting

of a number of inner zones with differing intensities of
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precipitation (results not shown). Clinical A. fumigatus

isolates were found to produce significantly (P B/0.05)

larger zone sizes (mean 25.019/2.70 mm) than that
observed for the environmental isolates (mean 18.309/

1.60 mm).

Clinical isolates of A. fumigatus as a group had an

extracellular phospholipase C activity that was ca. 2.5-

fold higher than the mean activity from environmental

isolates (mean 1.399/0.15 U/mg protein and 0.559/0.15

U/mg respectively). Acyl hydrolase activity was also

detected in all isolates tested but was around 1.4-fold
higher in the environmental isolates as a group

compared to the clinical A. fumigatus group (mean

5.909/0.68 U/mg protein and 4.099/0.45 U/mg protein

respectively).

A positive correlation was seen between phospholi-

pase C activity and total zone size for all isolates of

A.fumigatus (r�/0.67) but no correlation was found

between total acyl hydrolase activity and total zone size
(Fig. 1) or between phospholipase C and acyl hydrolase

activities (data not shown). When correlations were

calculated within each group between zone size and

phospholipase C activity, environmental isolates of A.

fumigatus had the lowest correlation value (r�/0.61)

compared to clinical A. fumigatus isolates (r�/0.82).

Discussion

In this study, we compared total phospholipase,
phospholipase C and phospholipid acyl hydrolase

activities between clinical and environmental isolates

of A. fumigatus. Clinical A. fumigatus isolates were

seen to produce larger zones sizes compared to the

environmental isolates as determined by the diffusion

agar assay [45]. Previously this method has been used to

demonstrate a strong positive correlation between zone

size and the level of extracellular phospholipase activity
and has shown that clinical isolates of C. albicans and

C. neoformans produce higher levels of extracellular

phospholipase activity compared to environmental

isolates [34�/37]. Because all the extracellular phospho-

lipases produced by an individual isolate would be

present in the culture supernatant, the total zone size

was used as an indication of the total phospholipase

activity of an isolate. Interestingly, a positive correla-

tion was found between the level of measurable

extracellular phospholipase C activity in the culture

broths and the zone size, with this correlation being

strongest in the clinical isolates which are the highest

phospholipase C producers, and lowest in the environ-

mental isolates which are the weakest producers.

However, there was no correlation between extracellu-

lar acyl hydrolase activity and zone size, suggesting that

much of the observed precipitation was due to the

action of extracellular phospholipase C (Fig. 2).

In C. neoformans and C. albicans, extracellular

phospholipase B (lysophospholipase) appears to be

Table 1 Mean values and ranges for zone of precipitation, phospholipase C activity, phospholipid acyl hydrolase activity and dry weight for

clinical and environmental isolates of Aspergillus fumigatus grown for 55 h in 0.5% (w/v) egg yolk lecithin supplemented with Vogel’s mineral

salts. n�/number of isolates in each category. Results represent the mean value of all isolates in each group9/SEM. One unit (U) is defined as the

amount of phospholipase activity required to cleave 1 mmol substrate per hour at 378C, pH 7.4. The mean values for the environmental and

clinical isolates were significantly different in all cases (P B/0.05).

n Phospholipase C activity

(U/mg protein)

Phospholipid acyl hydrolase

activity (U/mg protein)

Zone Diameter mm Dry weight

(mg/ml)

Mean (SE) Range Mean (SE) Range Mean (SE) Range Mean9/SE

A. fumigatus clinical 53 1.399/0.15 0.11�/5.38 4.099/0.45 0.41�/9.34 25.019/2.7 15.0�/35.1 3.449/0.05

A. fumigatus environmental 11 0.559/0.15 0.12�/1.53 5.909/0.68 3.24�/8.45 18.39/1.6 16.6�/19.6 2.529/0.05

Fig. 1 Diffusion plate assay using filter sterilised culture super-

natant from Aspergillus fumigatus isolate AF10 grown for 55 h in

Vogel’s medium with either (A) 0.5% (w/v) egg yolk lecithin or (B)

0.5% (w/v) glucose as sole carbon source. 150 ml of filter sterilised

supernatant was added to the respective wells and incubated at 378C
for 4 days.
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the only secreted phospholipase [41�/43] and an

attenuation of pathogenicity has been demonstrated

in mice in knockout strains [38,39]. A. fumigatus

contains at least two phospholipase B genes with high

homology to other fungal phospholipase B/lysopho-

spholipase B genes (NCBI Accession No. AF223004

and AF223005). A blastx interrogation of the A.

fumigatus genome sequence (TIGR database) with a

highly conserved region from other eukaryotic phos-

pholipase A proteins did not reveal any homologues.

Although a putative phospholipase A gene has been

reported from A. oryzae [47], a blastx search of this

sequence against the NCBI database gave highest

matches against fungal triacylglycerol lipases and did

not contain eukaryotic phospholipase conserved re-

gions (data not shown). Thus it seems likely that the

extracellular acyl hydrolase activity measured in culture

supernatants of A. fumigatus represents phospholipase

B activity alone. In this study however, phospholipid

acyl hydrolase activity was significantly lower in the

clinical isolates of A. fumigatus compared to the

environmental isolates, exactly the opposite of what

had previously been observed in similar comparative

studies in C. albicans and C. neoformans [34�/37]. This

suggests that phospholipid acyl hydrolase activity for

the environmental isolates may be more important for

growth in the environment than it is for clinical isolates

growing in the body.

Previously, we demonstrated the production of

extracellular phospholipase C activity by A. fumigatus

[40]. In this study comparing clinical and environmen-

tal isolates of A. fumigatus, although a wide variation

in production was observed, clinical isolates produced

significantly more phospholipase C than environmental

isolates (Table 1). Extracellular phospholipase C activ-

ity was also correlated with total zone size indicating

that phospholipase C activity makes a significant

contribution to the total extracellular phospholipase

activity. The importance of phospholipase C as patho-

genicity determinant in the aspergilli is as yet unknown,

but phospholipase C has long been known to be a

highly significant pathogenicity determinant in several

bacterial infections [32,33,48]. Moreover, aspergillosis

is a disease almost exclusively acquired by inhalation of

airborne conidia which penetrate deep into the alveolar

spaces that are lined with lung surfactant which is

composed of up to 80% phospholipid [49]. Degradation

of lung surfactant and subsequent breakdown in

oxygen tension may prove beneficial to colonisation.

In addition, an increase in phospholipase activity has

been demonstrated during the course of infection with

the respiratory pathogen Pneumocystis carinii [50].

Genetic variants of surfactant may be more ‘biode-

gradable’ by phospholipase C or other phospholipases,

accelerating the development of severe allergy, manifest

as allergic bronchopulmonary aspergillosis [51].

Fig. 2 Correlation between total zone diameter and extracellular phospholipase C activity (k) or extracellular phospholipid acyl hydrolase

activity (j) for each individual isolate used in this study. A positive correlation existed between zone size and phospholipase C activity (r�/0.67)

but not between total zone size and phospholipid acyl hydrolase activity (r�/0.33).
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Recently, we have identified and cloned a number of

genes encoding extracellular phospholipases which
includes three genes encoding putative secreted phos-

pholipase C and differ significantly from the intracel-

lular phosphatidylinositiol-specific phospholipases

which are involved in intracellular signalling

(unpublished data). Interrogation of the genome of

the sequenced strain (AF293) reveals all three are

present as a single copy and has been confirmed by

Southern analysis in another clinical strain AF10
(unpublished data). Thus, differences in phospholipase

C activity between environmental and clinical isolates

are not due to differences in gene copy number but may

be due to differences in regulation. Further investiga-

tions including studies on gene expression and the

creation of null mutants are currently being under-

taken.
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