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Abstract: Pseudomonas aeruginosa has long been established as the most prevalent respiratory pathogen
in Cystic Fibrosis (CF) patients, with opportunistic infection causing profound morbidity and mortality.
Recently, Aspergillus fumigatus has also been recognised as a key contributor to CF lung deterioration,
being consistently associated with decreased lung function and worsened prognosis in these patients.
As clinical evidence for the common occurrence of combined infection with these two pathogens
increases, research into the mechanism and consequences of their interaction is becoming more
relevant. Clinical evidence suggests a synergistic effect of combined infection, which translates into
a poorer prognosis for the patients. In vitro results from the laboratory have identified a variety of
possible synergistic and antagonistic interactions between A. fumigatus and P. aeruginosa. Here, we
present a comprehensive overview of the complex environment of the CF lung and discuss how it
needs to be considered to determine the exact molecular interactions that A. fumigatus and P. aeruginosa
undergo during combined infection and their effects on the host.
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1. Cystic Fibrosis

Cystic fibrosis (CF) is a life-limiting, inherited autosomal recessive disorder resulting from the
presence of one or more disease-causing mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR) gene. The global prevalence of CF is approximately 70,000–100,000 and within the
United Kingdom (UK) alone, over 10,000 people are living with this disease [1,2]. The incidence of
CF differs between geographical locations and ethnic groups; however, the highest rate is amongst
Caucasian populations, especially those of northern European descent, in whom incidence is 1 in
between 2500–4000 live births [1,3].

Since CF was first described over 80 years ago [4], patient life expectancy has vastly improved.
In the 1950s, median life expectancy for a new-born diagnosed with CF was as little as several months
and the main causes of death were meconium ileus or malnutrition due to pancreatic failure [5].
Life has dramatically improved for CF patients due to advances in modern medicine such as the
development of mucolytic agents, specific anti-pseudomonal drugs, pancreatic enzyme replacement
therapy as well as the introduction of a multi-disciplinary approach to CF patient care [5–7]. Yet
despite these improvements, patients continue to deal with intensive treatment regimens and frequent
hospitalisations that impact on their quality of life. Additionally, profound morbidity largely due
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to recurrent lung infections and progressive deterioration in lung function [8] makes progressive
pulmonary disease resulting in fatal respiratory failure the main cause of death in CF patients [5,9].

The CFTR gene itself is located on the long arm of chromosome 7 at position 31.2 [10] and is
subjected to a complex and strict transcriptional control that is not fully understood yet [11]. CFTR
encodes a unique cyclic adenosine monophosphate (cAMP)-dependent ion channel, which is the
only known member of the ATP-binding cassette superfamily that does not function as an active
transporter [3]. The protein comprises five domains: (i) two pseudo-symmetrical membrane-spanning
domains (MSDs) each made up of six helices connected by intra- and extra-cellular loops, (ii) two highly
conserved nucleotide-binding domains (NBD1 and NBD2) and (iii) a regulatory domain characterised
by charged residues and multiple consensus phosphorylation sites [12].

CFTR is located at the apical surface of epithelial cells, where it maintains ion transport
across exocrine, endocrine and pulmonary epithelial interfaces [3]. CFTR regulates sodium [13,14],
potassium [15–17], sodium bicarbonate [18], outward-rectifying chloride channels [19] and
calcium-activated chloride channels [20,21]. CFTR also regulates ATP release, vesicle trafficking
and cytokine expression [3].

More than 2000 variants of the CFTR gene have been identified [22], many of which are associated
with causation of CF disease [5,23]. The majority of mutations identified in CFTR are localised to NBD1.
Relatively few disease-causing mutations have been confirmed in NBD2 [24].

Mutations are classified into six groups according to their effect on protein expression and
physiological function (Table 1) [25]. Although the mechanism and extent of depletion may differ, all
classes of CFTR mutation result in overall functional loss of the protein in target cells [26].

Table 1. Classification of mutations in the cystic fibrosis transmembrane conductance regulator
(CFTR) gene.

CFTR Mutation Class

I II III IV V VI

CFTR Defect No functional
CFTR protein

CFTR
trafficking

defect

Defective
channel

regulation

Decreased
channel

conductance

Reduced CFTR
synthesis

Decreased
CFTR

stability

Mutation
Type

Nonsense;
frameshift;

canonical splice

Missense;
amino acid

deletion

Missense;
amino acid

change

Missense;
amino acid

change

Splicing defect;
missense

Missense;
amino acid

change

Examples of
Causative
Mutation

G542X ∆F508 G551D R117H 3849 + 10kbC→T 4326delTC

W1282X N1303K D178R R347P 2789 + 5G→A G1412X

The most common CF-causing mutation is a class II mutation resulting in deletion of phenylalanine
at amino acid 508 (∆F508). Up to 90% of CF patients are homozygous for ∆F508 and this deletion
constitutes up to two-thirds of mutated alleles in northern Europe and North America [27,28]. F508
is located in a highly conserved, alpha-helical region (residues 495–565) in NBD1 [29]. Deletion
disrupts ATP-dependent interactions in the F1-ATPase domain of NBD1 and alters kinetic and thermal
properties [12,30]. These changes affect protein assembly and post-translational stability such that
maturation of core glycosylated CFTR∆F508 to complex glycosylated fails, leading to endoplasmic
retention of CFTR∆F508 [31]. As a result, CFTR∆F508 is never trafficked to the cell membrane and the
concentration of functional CFTR in target cells is minimal.

2. Clinical Manifestations of Cystic Fibrosis

Functional loss of the CFTR ion channel leads to an inability to maintain osmotic balance across
all epithelial surfaces, resulting in wide-ranging pathophysiological effects that cause multi-system
organ dysfunction [32]. Extra-pulmonary manifestations of mutant CFTR are intestinal obstruction
(including meconium ileus in new-borns), exocrine pancreatic insufficiency, biliary cirrhosis of the liver,
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abnormal growth and infertility in males [33,34]. In the long-term, patients may develop cystic-fibrosis
related diabetes mellitus [35] and are at increased risk of clinical depression and anxiety [34]. However,
the major pathological consequence of CF is chronic lung disease.

Despite the monogenic nature of CF disease, it is likely that clinical manifestations are the product
of multiple pathophysiological changes [36]. This new appreciation of CF as a multi-factorial disease
may also explain the failure of mucolytic agents or aerosolised bicarbonate alone to rescue disease
status in animal models, as addressing a singular aspect of the pathology is insufficient for cure [1,5,37].
There are two main hypotheses proposed to explain the pathogenesis of CF lung, the “low-volume
hypothesis” and the “pH hypothesis”.

The “low-volume hypothesis” is the most well-established theory for the pathogenesis of CF
pulmonary disease [33]. This hypothesis stipulates that in CF lungs, loss of chloride efflux and excess
sodium and water reabsorption causes dehydration of both the airways surface liquid (ASL) and
mucus secretions. Cilia are rapidly compressed by the mucus layer [27], resulting in pulmonary ciliary
dyskinesis and impaired mucociliary clearance [3]. Thus, stagnant mucus plaques form in CF airways,
providing microaerobic and even anaerobic conditions that facilitate colonisation and persistence of
various fungal and bacterial pathogens, notably P. aeruginosa [38].

An alternative hypothesis is based upon alteration of the ASL pH: loss of function in CFTR
impairs bicarbonate transport across the pulmonary epithelia and reduces the ASL pH [39]. This
directly inhibits the innate antimicrobial activity of the many antimicrobial molecules contained in ASL
including lactoferrin, lysozyme, beta-defensins, LL-37, secretory leukocyte peptidase inhibitor and
surfactant protein A and D [40]. This hypothesis is supported by investigations in a porcine model,
where it was shown that both the individual and synergistic activities of these antimicrobial molecules
were significantly reduced in CF piglets, compared to wild type [39]. Furthermore, administration of
aerosolised sodium bicarbonate to increase ASL pH was found to rescue bacterial permeabilisation
and killing mechanisms in CF pigs [39]. Elimination of CFTR-regulated bicarbonate secretion lowers
not only ASL pH, but the pH of the submucosal glands also [41]. Submucosal glands produce
mucus strands that detach from the epithelium and comprise the mucus layer. Lack of mucus strand
detachment thus contributes to abnormal mucus composition, impaired mucociliary transport and the
obstruction of small airways [42,43].

In addition to defects in airway epithelium, mutant CFTR also gives rise to immune system defects
in CF airways. In particular, the role of the neutrophil is well characterised, with neutrophil-mediated
inflammation identified as a key driver of lung damage in CF [44]. Chronic colonisation continuously
activates pathogen recognition receptors, causing excessive influx of polymorphonuclear neutrophils
(PMNs) into the lungs [33]. However, mutant CFTR impairs degranulation and phagocytosis, so
neutrophils cannot kill pathogens effectively. Neutrophils also have enhanced lifespan in CF due to
dysregulation of apoptotic pathways and accumulate within the airways causing oxidative stress,
which further activates inflammatory pathways and IL-8-mediated PMN recruitment [45]. Neutrophils
also release elastase, a powerful serine protease that drives bronchiectasis by digesting cellular elastin
and secondly, increases mucus production by cleavage of epithelial cell-surface sodium channels [46].
The result is reduced pathogen clearance, chronic inflammation and damage to lung tissue [33].

The host response to infection is compromised in CF; however, abnormally elevated levels of
the pro-inflammatory cytokines IL-6, IL-1β, IL-8 and TNFα have also been found in uninfected CF
immortalised cell lines and ex vivo lung explants [27,47,48]. These findings have led to the hypothesis
that mutated CFTR also makes epithelial cells intrinsically more inflammatory, and that the primary
defect in CF may be a dysregulated host inflammatory response [27]. In addition, the production
of anti-inflammatory substances like IL-10, docosahexaenoic acid and lipoxin [49,50] is reduced
in CF, resulting in a cytokine imbalance that favours a pro-inflammatory lung environment [8,51].
Indeed, T helper cell type (Th)-2, Th-17 and T-regulatory cell responses are also dysregulated at
numerous levels [52]. A plausible interpretation of these findings by Elborn (2016), is that intrinsic
pro-inflammatory cell properties may b the primary cause of inflammation in the CF lung during



Pathogens 2020, 9, 639 4 of 19

infancy; however exposure to pathogenic microorganisms and ineffective immune response becomes
the main driver of chronic inflammation in later life [5].

In consideration of the evidence, the CF lung may be described as a pro-inflammatory environment
characterised by viscous mucus secretions, acidic ASL pH, and impaired innate and adaptive immune
responses to pathogen challenge. Overall, these pathophysiological changes contribute to the
formation of a permissive pulmonary niche, facilitating chronic lung colonisation with opportunistic
microorganisms. Thus, CF patients are vulnerable to recurrent cycles of infection and inflammation,
inevitably leading to pulmonary system failure [53].

3. Dysbiosis of the Pulmonary Microbiome in Cystic Fibrosis

The lung was, until recently, thought to be a sterile organ (unless infected). Previously, standard
microbial culture failed to replicate the environment inside the lung sufficiently to enable bacterial
growth from bronchoalveolar lavage (BAL) samples, perpetuating the sterile lung theory. The advent
of molecular techniques has since generated evidence to demonstrate that healthy lungs are colonised
by a distinct bacterial community [54], which is putatively implicated in the pathology of chronic lung
diseases like CF [55].

In a healthy host, the most prevalent phyla are Firmicutes and Bacteroidetes [54] with lesser numbers
of Proteobacteria and Actinobacteria also present [56]. The core pulmonary microbiota comprises:
Pseudomonas, Streptococcus, Haemophilus, Neisseria, Prevotella, Fusobacterium and Veillonella species [57].
Growth conditions in the lung are determined by nutrient and oxygen availability, pH, temperature,
as well as the host inflammatory response. In health, these three factors are tightly regulated, but in
patients with chronic lung diseases like CF, they are imbalanced by compromise of host defences [54].
Research undertaken to characterise the microbiota in chronic lung diseases has identified aberrant
outgrowth of one of the four main phyla [56] leading to dysbiosis of the microbiome. For CF,
Proteobacteria and Actinobacteria are overrepresented, correlating with clinical evidence of bacterial
infections that predominate in these patients [56,58].

CF lung pathogens are typically opportunistic, environmental bacteria and fungi that rarely cause
disease in healthy hosts. As discussed above, CF patients fail to clear invading bacteria and fungi,
which facilitates chronic infection. Chronic colonisation and infection results in the production of
microbial toxins, proteases and invasive growth, e.g., fungal hyphae, which causes inflammation,
epithelial tissue damage and overall decline in pulmonary function. Microbial growth within the
lung also triggers pro-inflammatory pathways and leukocyte recruitment, which further damages
the epithelia and induces secretion of viscous mucus [33]. The respiratory “virome” remains largely
unknown [59,60]. Few studies have investigated the contribution of viruses to the CF lung metagenome,
mainly due to the current lack of consensual viral gene markers comparable to the 16S ribosomal
system in bacteria [61,62]. Despite this incomplete picture, it remains that disease course and severity
is increased when CF patients contract viral pneumonias [63].

The CF microbiome is dynamic and undergoes compositional changes as pulmonary disease
progresses. However, relating these to pulmonary exacerbations has proved challenging [59].
Cross-sectional and longitudinal studies have demonstrated that CF patients are colonised by
increasing numbers of microorganisms as they age, with good airway diversity typically maintained
until adolescence [59]. The most common microorganism found in the airways of CF children is
Staphylococcus aureus, which is substituted for by P. aeruginosa as patients transition to adulthood [2,64,65].
The relationship between these two pathogens is not yet understood, but some clinical studies have
indirectly supported an inverse association between them [66,67]. However, it seems to be clear that
the development of chronic infections caused by P. aeruginosa are associated with lung function decline
and thus treatments aiming to eradicate initial infections are often recommended [68–70]. However,
the administration of cumulative antibiotic courses to treat recurrent lung infection introduces selective
pressure that favours survival of resistant bacteria [59,71].
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Data from both the UK and US 2018 Cystic Fibrosis Trust patient registry reports [2,65] show
that P. aeruginosa overall remains the most prevalent pathogen colonising CF lungs due to its capacity
to specifically adapt to the CF airway and grow as biofilm, discussed in detail in the next section.
Other important pathogens known to colonise and cause infection in CF patients include: Haemophilus
influenzae, S. aureus and meticillin-resistant S. aureus, Stenotrophomonas maltophilia, the Burkholderia cepacia
complex [59] and atypical non-tuberculous Mycobacteria species [72]. Anaerobes are also abundant in CF
sputum and BAL samples [73], however their contribution to pulmonary morbidity remains unclear [68].
Anaerobes likely contribute to the “resistome” (the total number of antibiotic-resistance genes carried
by microorganisms in the lungs) but whether their overall effect is beneficial, or detrimental remains to
be deciphered [73,74].

Finally, the CF mycobiome has recently emerged as a promising area of research. Previously,
the mycobiome was under-recognised due to the low sensitivity of culture-based detection methods,
combined with low overall numbers of fungi in the lungs (in comparison to bacteria) and the general
perception of these as environmental contaminants [75,76]. In fact, the CF mycobiome is fairly
diverse: Aspergillus, Candida, Cladosporium, Penicillium, Scedosporium and Exophiala species have all
been identified in CF cohorts [77,78]. The contribution of A. fumigatus to pulmonary disease in CF is of
particular interest, as this pathogenic fungus is frequently isolated from patient respiratory samples
and has been associated with worsened prognosis and pulmonary function [79].

Herein, the individual contribution of P. aeruginosa and A. fumigatus to CF lung disease will be
discussed, before reviewing the current state of the field regarding combined infection with these two
classic CF pathogens.

4. Pseudomonas aeruginosa Is the Predominant Respiratory Bacterial Pathogen in Cystic Fibrosis

P. aeruginosa is a Gram-negative bacterium and facultative anaerobe, found ubiquitously in soil
and water. P. aeruginosa is a prolific pathogen that infects many different tissues, causing serious skin
and soft tissue infections; endocarditis; urinary tract infections; gastrointestinal infections; meningitis;
ocular and ear infections; and ventilator-associated pneumonias [33]. P. aeruginosa causes both chronic
and acute infections, the majority of which occur in the immunocompromised, hospitalised patients or
those with an underlying pulmonary disease, like CF.

P. aeruginosa has long been established as a formidable, opportunistic pathogen in CF patients,
with up to 80% of individuals chronically colonised by age 20 [80]. The contribution of this bacterium
to progressive lung disease in CF is so profound, that P. aeruginosa colonisation status remains the
single most important determinant of morbidity and mortality in CF [3]. Despite intensive antibiotic
therapy and the development of drugs with enhanced anti-pseudomonal activity, the vast majority
of CF patients that experience intermittent infection with P. aeruginosa will go on to establish chronic
infection (defined as infection for >6 months +/-positive serology) [81].

Patients are periodically colonised by phylogenetically distinct strains of P. aeruginosa from early
on in life and longitudinal studies have demonstrated that by age three, 98% of CF patients have
positive serology and/or culture for P. aeruginosa [81,82]. During this intermittent stage, infection is
caused by planktonic P. aeruginosa cells and may still be successfully eradicated by inhaled antibiotic
therapy [81]. Transition from intermittent to chronic infection represents successful adaption of the
bacterium to CF airways, and is a seminal clinical event that precipitates pulmonary decline and
increased mortality [83].

Adherence to the lung epithelium is mediated by P. aeruginosa flagella and pili [33]. Once
P. aeruginosa has colonised the epithelium, diffusible LasR and RhiR quorum sensing molecules regulate
the expression of immunomodulatory virulence factors to facilitate survival in the hyperinflammatory,
neutrophil-rich CF lung [84]. For example, P. aeruginosa secretes exotoxins via its Type III secretion
system that can directly lyse neutrophils [85], pyocyanin induces neutrophil apoptosis [86] and alkaline
protease degrades complement proteins to evade opsonophagocytosis [87].
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Crucially, P. aeruginosa possesses a highly plastic genome that undergoes micro-evolution within
the host, allowing specific adaption to the CF niche and rapid acquisition of gene elements encoding
multi-drug resistance determinants [3]. Evolution is driven by the uniquely stressful environment
that P. aeruginosa encounters in CF lungs, for example high antimicrobial drug concentration and
neutrophil abundance [33]. Micro-evolutions arise by spontaneous mutation and subsequent
selection of phenotypic/genotypic variants with enhanced survival [88]. The emergence of variants
within an infected individual facilitates transition to chronic infection [89]. Common variant
characteristics include downregulation of immunostimulatory virulence factors [90], overexpression of
exopolysaccharides [81] and decreased motility to promote biofilm formation [91–94]. In fact, biofilm
development is characteristic of chronic infections, which are virtually impossible to eradicate as
biofilms confer increased resistance to antimicrobials and immune killing [95,96]. One of the most
significant variants that has been associated with biofilm formation and establishment of chronic
infection is the emergence of mucoid colonies [91]. Furthermore, mucoid colonies are strongly
associated with severe bronchiectasis and rapid respiratory decline in CF patients [97]. Mutations in the
mucA gene give rise to this phenotype, which overexpresses alginate exopolysaccharide. Mucoidy can
inhibit complement activation [98]; is resistant to neutrophil extracellular traps [99]; evades phagocytic
killing [100]; resist innate antimicrobial peptides including LL-37 [101]; and is recalcitrant to even
specifically anti-pseudomonal drugs [33,102].

5. Aspergillus fumigatus Is the Predominant Respiratory Mould Pathogen in Cystic Fibrosis

Aspergilli are filamentous, saprophytic fungi that decompose organic matter and are integral to
the recycling of carbon and nitrogen compounds in numerous environmental niches [103]. Various
characteristics allow Aspergillus species to survive within physiologically harsh environments, including
rapid germination, growth within a wide pH range and at high temperatures (<60 ◦C) and flexible
nutrient metabolism [104]. Aspergilli are therefore found worldwide in soil, decaying vegetation and
ambient air as well as in artificial environments such as composting facilities, air handling systems
and building insulation [103,105]. Human exposure to these ubiquitous fungi is inescapable; however,
colonisation, infection and disease only occurs if host defences fail to eradicate fungal fragments or
spores (conidia) from the body [106]. Disease is therefore a product of complex interplay between fungal
virulence factors and host-related factors such as immune status and pulmonary structure [107,108].

The highest burden of aspergillosis is within the pulmonary system [109] because exposure to
infectious particles most frequently occurs via inhalation of airborne conidia, fungal allergens or other
cell fragments. Aspergillus sporulate abundantly and a single colony can generate several billion conidia,
which are then disseminated by air and other routes [110]. Humans inhale many litres of air every
minute, resulting in constant exposure to thousands of airborne conidia [106,111]. Thus, respiratory
forms of aspergillosis are prevalent in the global population: chronic pulmonary aspergillosis affects
3 million people; fungal allergy including sensitisation over 10 million; and invasive diseases affect
0.2 million [106,109].

A. fumigatus is the most pathogenic species within the genus as a whole, although A. flavus,
A. nidulans, A. niger, and A. terreus are capable of causing disease in humans [110]. In addition,
A. fumigatus is associated with highest morbidity in CF patients [75]. The success of A. fumigatus as
a respiratory pathogen is multifactorial; however, a critical factor is that its spores are small enough
(2–3 µm diameter) to penetrate deep into the lungs and reach the distal alveoli [110,112].

Aspergillosis rarely affects healthy hosts because deposited spores are rapidly eradicated by
innate defences. The first line of defence is the lung epithelium itself, where inhaled conidia and fungal
fragments encounter mucopolysaccharide secretions in the upper respiratory tract that effectively trap
and clear conidia via the mucociliary pathway. However, Aspergillus spores penetrating as far as the
alveoli bypass this defence mechanism. Specialised epithelial cells also secrete antimicrobial molecules
and recruit immune cells to the deposition site [106]. In order for invading pathogens to be cleared
efficiently, lung epithelial cells, macrophages and dendritic cells maintain the balance between Th-1,
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Th-17, Th-2 and T-regulatory cells. Th-1 cell proliferation is critical in responding to fungal challenge as
this pathway activates neutrophils, T-cells and macrophages, which phagocytose fungal cells [106,112].
The role of neutrophils in A. fumigatus challenge is well defined; these cells phagocytose conidia [110]
and employ extracellular traps (NETs) to inhibit hyphal growth too large for phagocytosis [113].

In CF, these innate host defences are impaired and Aspergillus conidia germinate. Pulmonary
aspergillosis may manifest as four distinct disease entities in CF patients: chronic colonisation,
Aspergillus hypersensitisation, allergic bronchopulmonary aspergillosis (ABPA) or Aspergillus
bronchitis [79]. Two different models have been proposed to explain development of aspergillosis in
CF, each supported by limited clinical research. The first proposes sequential disease progression with
increasing severity, for example developing Aspergillus bronchitis subsequent to persistent colonisation,
whereas the other considers each disease entity to be separate [79].

Aspergillus colonisation prevalence in CF patients is between 10–57%, with higher prevalence being
associated with increasing age and poorer lung function [79]. Colonisation occurs when Aspergillus
spores germinate and form mycelium at the epithelial surface [76]. The pathophysiology of progression
from colonisation to active pulmonary infection has not yet been fully determined, however, chronic
colonisation is a predecessor to pulmonary aspergillosis in compromised hosts [106,107].

Bronchial colonisation with A. fumigatus certainly drives the development of allergic forms of
aspergillosis [76,114]. Aspergillus hypersensitisation is characterised by a raised immunoglobulin E
response to Aspergillus allergens without clinical symptoms [76,107]. Baxter et al. (2013) also showed
that hypersensitisation is distinguishable from ABPA by negative galactomannan test and lack of
raised serum IgG [115].

ABPA is now a well-defined clinical entity in CF patients, despite challenges in the field regarding
standardisation of diagnostic criteria [116]. This allergic aspergillosis is characterised by an exaggerated
Th2-mediated immunoglobulin E response to Aspergillus allergens, with eosinophilia and mast cell
degranulation [76,107]. Prevalence of ABPA in CF patients varies between 1–18% depending on
geographical region but is likely to be underdiagnosed [79]. Classic manifestations of ABPA are
respiratory exacerbation (wheeze), positive serology against Aspergillus (IgE) and visible pulmonary
infiltrates upon imaging [117].

Aspergillus bronchitis is an emerging form of clinical aspergillosis in CF patients, affecting
approximately 9% of this cohort [118]. Pseudomembranous mycelial growth in the airways causes
breathlessness, recurrent respiratory infections (that respond poorly to antibiotics) and mucus plugging.
Bronchoscopic examination typically reveals bronchial erythema, ulceration and superficial hyphal
invasion of the mucosa [106,119].

The contribution of A. fumigatus to chronic pulmonary disease in CF is now clear and
well-recognised. Advances in next-generation sequencing and culture-independent techniques
have made the study of diverse microbial communities possible. Now, inter-kingdom interactions
between A. fumigatus and dominant bacterial pathogens like P. aeruginosa have become established as a
promising area of research due to their clinical implications.

6. Combined Infection with Aspergillus fumigatus and Pseudomonas aeruginosa in Cystic Fibrosis

A. fumigatus and P. aeruginosa are the most prevalent fungal and bacterial species that infect CF
airways, respectively [120]. P. aeruginosa has long been recognised as a key pathogenic member of the
CF lung microbiota; however, until recently, the contribution of A. fumigatus to pulmonary disease
in CF was underestimated. Application of molecular techniques such as next-generation sequencing
has facilitated characterisation of the complex microbial community that colonises CF lungs, bringing
about a paradigm shift in the management of polymicrobial lung infections in this patient cohort [83].

Clinical evidence has for some time suggested high frequency of A. fumigatus-P. aeruginosa
combined infection in CF patients. Both pathogens have been isolated simultaneously from patient
sputum samples, with A. fumigatus identified in up to 60% of patients with chronic P. aeruginosa and
conversely, P. aeruginosa identified in up to 64.2% of patients positive for A. fumigatus [121,122]. Indeed,
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it has been reported that P. aeruginosa infection is associated with higher incidence of concurrent
and subsequent A. fumigatus infection [123], and that A. fumigatus colonisation was associated with
an increased risk of P. aeruginosa colonisation [124]. A recent systematic review and meta-analysis
estimated pooled combined infection prevalence to be ~15.8%, with a range of 2.2–44.8% [120].
For these patients, persistent combined infection with A. fumigatus and P. aeruginosa is associated with
overall worsened lung function [125]. Unfortunately, studies investigating clinical manifestations of
A. fumigatus-P. aeruginosa combined infection in CF patients are limited and prospective longitudinal
studies are required in order to confirm these associations [83].

In vitro studies have mostly described antagonistic interactions between these two pathogens.
For example, P. aeruginosa is known to inhibit A. fumigatus through the action of several secreted
molecules: secretion of dirhamnolipids inhibit growth by blocking β1,3 glucan synthase [126],
homoserine lactones suppress hyphal growth [127] and reactive oxygen species (ROS)-producing
phenazine compounds cause fungal death [128]. Although paradoxically, promotion of A. fumigatus by
P. aeruginosa also occurs through phenazine secretion, whereby sub-bacteriostatic concentrations of
phenazine induce iron uptake by A. fumigatus [126,129]. P. aeruginosa also mediates A. fumigatus
growth inhibition by iron starvation through various mechanisms including iron chelation by
pyoverdine [130,131] and pyocheline (a compound that also triggers ROS production) [132]. In addition,
the Pf4 class of bacteriophages produced by P. aeruginosa are known to bind to and inhibit the metabolic
activity of A. fumigatus biofilms [133]. With regards to A. fumigatus inhibition of P. aeruginosa, the main
inhibitory agent secreted by the fungus is gliotoxin, which is a broad-spectrum inhibitor of bacterial
biofilm formation [134]. Synergistic interactions have also been described in vitro; for example,
P. aeruginosa can indirectly stimulate the growth of A. fumigatus by release of a volatile organic
compound, dimethyl sulphide, demonstrating that A. fumigatus and P. aeruginosa interact even at
distance [135]. Additionally, it has been described that the A. fumigatus stress response to pseudomonal
phenazines can degrade those molecules into chemicals that induce Aspergillus siderophore and
enhance fungal iron scavenging [136,137]. A. fumigatus response to iron is also modulated by a
pseudomonal quorum sensing molecule, P. aeruginosa quinolone signal, which enhances fungal growth
and metabolism under iron-rich conditions, similar to those found in the CF lung environment [138].
Conversely, recent proteomic analysis by Margalit et al. has shown that A. fumigatus can confer fitness
to P. aeruginosa by increasing environmental nutrient availability, especially of amino acids and nitrate,
which thereby stimulates bacterial growth and pathogenicity [139]. The nature of A. fumigatus-P.
aeruginosa interactions becomes more complicated when other factors are considered. For instance,
the inhibitory effect of P. aeruginosa on A. fumigatus is reduced under hypoxia, which is the actual
environment where these pathogens interact [140]. Furthermore, small colony variants of P. aeruginosa
with high-level pyoverdine expression (mucoidy phenotype), which are commonly isolated from
chronically colonised CF lungs, have been shown to be more inhibitory towards A. fumigatus [141].
Inhibitory capacity is also determined by mode of growth, as P. aeruginosa is more inhibitory towards A.
fumigatus in biofilm form, compared to planktonic [129] Moreover, P. aeruginosa is more inhibitory when
growing as a biofilm compared to planktonic, but is only weakly inhibitory towards mature A. fumigatus
biofilms [142]. In context, the majority of CF patients are chronically colonised by P. aeruginosa prior
to A. fumigatus and therefore interactions would most likely occur between pre-formed P. aeruginosa
biofilm and desegregated hyphal, rather than thick mycelial, fungal growth [129].

In vitro results reflect that both synergistic and antagonistic interactions are possible between
P. aeruginosa and A. fumigatus. Differences in the type of interaction detected in some of the studies
described above, is likely due to the experimental set up and methodology. For example, interactions
will be dependent on the medium used to grow the microorganisms, as the nutrient environment
strongly influences the production of metabolites that can exert an effect on the other microbe
(e.g., the siderophores, pyoverdine and pyochelin, are produced only under iron limiting conditions).
In any case, both synergistic and antagonistic interactions may have a deleterious effect on the host.
Herein, synergism can cause increased pathogen growth and antagonism can result in increased
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damage to host tissues due to production of toxic molecules. An important first step to clarify the
specific relationship that A. fumigatus and P. aeruginosa establish in the human lung, would be to
consider the contribution of the host and host–pathogen interactions. Thus far, only a handful of
studies have investigated the pathogen–pathogen interaction including either host cells or an in vivo
model. Reece et al. reported a mutually antagonistic effect that may increase the pro-inflammatory
response in CF epithelial cells and resulted in P. aeruginosa causing increased mortality in Galleria
mellonella after pre-exposure to a non-lethal dose of A. fumigatus [134]. Similarly, we recently described
that combined infection triggered increased fungal and bacterial burdens and caused greater mortality
in G. mellonella [143]. Margalit and colleagues showed that A. fumigatus renders human alveolar
epithelial cells unable to internalise P. aeruginosa, which resulted in higher proliferation of the bacteria in
combined infection, compared to in single infection [144]. In addition, Briard et al. found that sequential
infection of monocytes by P. aeruginosa and A. fumigatus synergistically increased the secretion of the
pro-inflammatory cytokine IL1β, which could cause an over-inflammatory environment in patients
with combined infection [132]. Finally, Smith et al. have reported that P. aeruginosa production of
cytotoxic elastase is enhanced in the presence of A. fumigatus, which caused more damage to epithelial
cells [145]. Overall, these studies suggest that combined infection causes greater damage to the host
tissues, independent of the sequence of infection.

In summary, it will only be possible to determine the real nature and exact interactions that
A. fumigatus and P. aeruginosa undergo during combined infection, when the complexity of the CF
lung is factored into experimental design. For this purpose, animal models seem key; however, to
date, only two studies have attempted to model pulmonary combined infection in mice, with limited
results. The first modelled combined infection by chronically infecting corticosteroid-treated mice with
A. fumigatus using agar beads embedded with conidia, then twelve days later superinfecting those
mice with P. aeruginosa [146]. In these superinfected mice, Yonezawa et al. found no change in fungal
burden and increased bacterial burden, with statistical analysis showing a non-significant decrease in
mortality compared to single A. fumigatus-infected mice [146]. These results diverge from the current
understanding amongst clinicians, which is that combined infection increases patient mortality. In fact,
the scope and findings of this study were limited by its methodology in several different aspects.
Firstly, the reverse sequence of A. fumigatus superinfection on top of chronic P. aeruginosa infection
was not assessed, despite the majority of CF patients being chronically colonised by P. aeruginosa prior
to A. fumigatus [129]. Secondly, the inoculation of conidia embedded into potato dextrose agar beads
does not represent a natural infection process, as fungal metabolism is affected by the rich medium,
and thus methodology may have led to artefactual interactions in this model. Finally, corticosteroid
treatment is not an adequate method for modelling chronic lung inflammation in mice.

The same group attempted to assess combined infection and evaluate antimicrobial drug efficacy
in vivo using an alternative methodology [147]. In this study, mice were simultaneously inoculated
by nasal administration with an A. fumigatus conidial suspension and P. aeruginosa cell suspension.
Unfortunately, the use of a leukopenic model resulted in combined infected mice dying within three
days post-infection, which impeded any assessment of the A. fumigatu-P. aeruginosa interaction [147].
These two studies highlight the technical problems currently encountered in an in vivo combined
infection model, where animals face high pathogen challenge and experimental design is complicated.

In conclusion, the complexity of described interactions between these two pathogens indicates
that the nature of their relationship, as well as their combined effects on the host, is strongly dependent
on the specific conditions in which they are found. The CF lung is extremely complex and therefore,
this unique environment needs to be factored in to be able to determine the exact interactions that P.
aeruginosa and A. fumigatus undergo during combined infection.

7. Future Directions for Clarifying A. fumigatus-P. aeruginosa Interactions in CF

We believe that the variety of findings described above (Figure 1) are a product of the broad range
of models used thus far to assess A. fumigatus-P. aeruginosa interactions. Hence, this field requires
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further and more focused investigations to gain a more complete and accurate understanding of
in vivo interactions. In the future, employing experimental models such as air–liquid interface culture
of human CF bronchial epithelial cells, with isogenic CF cell lines carrying specific mutations, CF
transgenic mice or primary lung cells from patients with known CFTR mutations will improve the
representation of the unique environment in which A. fumigatus and P. aeruginosa encounter each
other during combined infection of the CF lung. Indeed, the complexity of the CF lung environment
will require careful consideration during experimental design. For example, CF is characterised by
progressive pulmonary deterioration and it must therefore be acknowledged that the lung environment
colonised by A. fumigatus and P. aeruginosa changes over the disease course. In addition, antimicrobial
treatment prescribed to CF patients is now known to impact not only the target organism, but the
microbial community as a whole, which has important implications in the context of combined
infection [129]. For example, Baxter et al. (2013) reported that treating respiratory exacerbations in CF
patients with short-term courses of anti-Pseudomonal drugs reduced Aspergillus species abundance,
indicating an inter-dependent relationship between the two species [115]. Furthermore, it is well
established that P. aeruginosa undergoes micro-evolutions within the CF lung to adapt to the challenging
environment [88] and these resultant strains seem to interact differently with A. fumigatus [142,148].
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Figure 1. Pseudomonas aeruginosa-Aspergillus fumigatus interactions identified in different models of
combined infection. The figure summarises the type of interaction and the main effects observed in
published studies to-date, which are divided based on the level of complexity of the model. In vitro
studies have detected predominantly antagonistic interactions of one pathogen on the other (red arrow),
but a few have also described synergistic interactions (green arrows). All other models have detected
increased (black arrows) pathogen burden and/or mortality and clinical studies have detected decreased
lung function.

Upon consideration of all the findings, our interpretation is that the nature of A. fumigatus-P.
aeruginosa interactions is variable, and likely dependent upon environmental factors relating to disease
progression and treatment. Similarly, Zhao et al. (2018) suggested that interactions between A. fumigatus
and P. aeruginosa might shift from a synergistic growth pattern, to mutual inhibition as CF lung disease
progresses [120]. Initially, P. aeruginosa colonisation and growth as biofilm gives rise to nutritional and
immunological conditions that promote concurrent growth of A. fumigatus. For an undefined period,
the two microorganisms grow in a synergistic manner, although competition for biological resources
may shift the balance towards mutual inhibition, which can still have deleterious consequences for the
host due to the production of toxic molecules [120].
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Overall, the diversity of microbial life in CF airways is now appreciated; however,
the understanding of the dynamic nature of the lung microbiome and environment remains incomplete.
At a cellular level, A. fumigatus-P. aeruginosa interactions inside the CF lung appear highly complex and
are regulated by numerous external environmental factors. Determining the exact type of interactions
that occur in each phase of disease will be fundamental to devise novel and/or optimised treatment
strategies that can help to maintain lung function. Progressive loss of lung function caused by repeated
pulmonary infections is the major cause of death in CF patients [149,150]. Therefore, if further research
were to confirm that pathogen growth is enhanced in combined infection, combinatorial treatment
with drugs that have a synergistic or dual effect would be indicated. In this respect, some new azoles
have been described to have anti-P. aeruginosa activity [151] and some antibacterial drugs have direct
antifungal activity [152,153] and/or synergise with common antifungals [154–157]. In contrast, if the
major effect of the interaction were to trigger secretion of a toxic compound, a virulence blocker would
be beneficial. For example, inhibitors of the P. aeruginosa elastase virulence factor, which as mentioned
above is upregulated in the presence of A. fumigatus [145], have been reported [158–160].

In conclusion, even if our understanding of the interaction between P. aeruginosa and A. fumigatus
has advanced significantly in the last few years, further studies employing more physiological models
that factor in the complexity of the CF lung are needed to determine the exact interaction that these
two pathogens undergo during combined infection. Such accurately modelling for combined infection
has proved challenging thus far.
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