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a b s t r a c t

The ubiquitous filamentous fungus Aspergillus fumigatus secretes a number of allergens

with protease activity and has been linked to a variety of allergic conditions such as Severe

Asthma with Fungal Sensitization (SAFS) and Allergic Bronchopulmonary Aspergillosis

(ABPA). However, it is unclear which allergen proteases are being secreted during fungal in-

vasion and whether the local biological environment regulates their expression. Under-

standing the dynamic expression of allergen proteases during growth of A. fumigatus

may lead to further characterisation of the pathogenesis of these disorders as well as im-

proved standardisation in the commercial production of these allergens. Secretion of pro-

teases during germination and early growth of A. fumigatus was investigated in response to

various complex protein sources (pig lung homogenate, mucin or casein). Protease inhibi-

tor studies demonstrated that A. fumigatus (AF293 strain) secretes predominately serine

proteases during growth in pig lung based medium and mainly metalloproteases during

growth in casein based medium but suppressed protease secretion in unmodified Vogel’s

minimal medium and secreted both types in mucin based medium. Analysis of gene tran-

scription and protein identification by mass spectrometry showed that the matrix metallo-

protease, Mep/Asp f 5 and the serine protease, Alp1/Asp f 13, were upregulated and

secreted during growth in pig lung medium, whereas Alp1 was predominately expressed

and secreted in mucin based medium. In casein medium, the matrix metalloprotease,

Lap1, was also upregulated and secreted in addition to Mep and Alp1. These findings sug-

gest that A. fumigatus is able to detect different complex proteins available as substrates in

its environment and regulate protease secretion accordingly. There is a requirement for the

standardisation of A. fumigatus allergen extracts used both in clinical diagnosis of A. fumi-

gatus allergy and in research studies.
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Introduction

Aspergillus fumigatus (Af ) is a filamentous fungus that is ubiq-

uitous within the environment. In compost, it plays an impor-

tant role in the breakdown of organic material and the

recycling of carbon and nitrogen whereas in the human

host, it is involved in a number of diseases associatedwith im-

mune perturbations. For instance, in neutropenic individuals,

Af is a frequent opportunistic pathogen and causative agent in

invasive aspergillosis (Bodey & Vartivarian 1989). In atopic in-

dividuals, Af is involved in allergic lung diseases such as Se-

vere Asthma with Fungal Sensitization (SAFS) and Allergic

Bronchopulmonary Aspergillosis (ABPA) (Denning et al. 2006).

Exposure to fungi is ubiquitous although the precise aller-

gens that individuals are exposed to may be different depend-

ing on the source of the allergicmaterial. It has been suggested

that, unlike exposure to allergens from other sources, such as

house dust mite, chronic exposure to fungal allergens may

also occur during colonisation of the host lung by fungi and

that the products of germinating conidia and hyphae may be

responsible for allergy and the development of asthma

(Denning et al. 2006). Such theories have been supported by

a number of studies where colonisation of the lung by conidia

of A. niger in a murine model of airway allergy results in the

development of atopy and allergy (Porter et al. 2009). Of note,

the majority of allergens from nonfungal sources that have

been linked to asthma also show protease activity (Reed

2007). To date, over 25 allergens have been identified from

Af, a number of which have protease activity (Bowyer &

Denning 2007) and demonstrate biological function. Further-

more, exposure of lung alveolar and bronchial epithelial cells

to germinating Af conidia or crude Af culture extract contain-

ing themetalloprotease allergen, Mep (Asp f 5) and serine pro-

tease allergen, Alp 1 (Asp f 13), has been shown to cause

protease-dependent release of proinflammatory cytokines,

IL-6, and IL-8 (Tomee et al. 1997; Kauffman et al. 2000;

Bellanger et al. 2009). Additionally, Alp1 has been shown to

act in a protease-dependent manner, as an adjuvant during

sensitisation to ovalbumin in a murine model of allergy

(Kheradmand et al. 2002). These studies would suggest the in-

volvement of Af allergen proteases in allergic airway disease,

however the conditions regulating allergen protease secretion

are not clear.

Previous work has shown that Af regulates the expression

of allergen proteases during growth under different culture

conditions including oxidative stress and anoxia (Fraczek

et al. 2010). Others have shown that Af secretes different sets

of proteases depending on the pH of the growth medium

(Sriranganadane et al. 2010). Af has also been shown to secrete

allergen proteases when grown in liquid culture with complex

proteins such as collagen and elastin as the sole carbon and

nitrogen source (Monod et al. 1991; Moutaouakil et al. 1993;

Gifford et al. 2002; Bergmann et al. 2009) and in vivo during col-

onisation of mouse lung (Monod et al. 1991; Moutaouakil et al.

1993). Af is only able to assimilate amino acids and short pep-

tides via membrane transporters, therefore the secretion of

proteases to breakdown large peptide sequences is likely to

be critical to allow growth in environments dominated by pro-

tein as the sole carbon and nitrogen source such as the lung.
Although proteases have been shown to be produced by Af

in the murine lung, it is not known whether the expression of

individual allergen proteases is dependent on the type of sub-

strate it encounters. InhaledAfwould initially contact themu-

cus layerof thehost airwayepitheliumandas it grows,damage

to this barrier would expose the underlying connective tissue

and different substrates such as collagen and elastin. In the

current study, the amount, type, and activity of major allergen

proteases secreted by Afwas determined in response to either

physiological substrates such as lung homogenate and mucin

or a defined protein substrate such as casein.

Materials and methods

Culture media

Vogel’s salts (50�) were used as a base for all liquid media and

preparedaspreviouslydescribed (Vogel 1956),with theomission

of ammonium nitrate and chloroform. Vogel’s salts (1�) were

supplementedwithbovinemilk casein (1%w/v; SigmaeAldrich,

Poole, UK), freeze dried ground porcine lung (0.4 %w/v; local ab-

attoir) or porcine gastricmucin (1 %w/v; SigmaeAldrich). In ad-

dition,Vogel’s saltsweresupplementedwithammoniumnitrate

(25mM)andD-glucose (55.5mM) toprepareVogel’sminimalme-

dium.Allmediapreparationswere autoclaved for 15min. Liquid

cultureswereperformed in2Lconicalflaskscontaining500mlof

sterilizedmedium capped with a sponge stopper.

Aspergillus fumigatus strain and culture

All cultures and culturemediawere prepared and handled un-

der aseptic conditions. Af strain Af293 was used in all experi-

ments andwas a kind gift from theMycology Reference Centre

Manchester (Wythenshawe Hospital, Manchester, UK). Af

spores were prepared by growth on Sabouraud Dextrose

Agar (Oxoid, Basingstoke, UK), in a vented 75 cm2 tissue cul-

ture flask, for 72 h at 37 �C. Spores were harvested by gentle

agitation in PBS 0.05 % Tween 20, filtered through four layers

of sterile Whatman lens cloth to remove hyphal fragments

and counted using a Neubauer haemocytometer. Liquid cul-

ture media were inoculated with 1 � 106 conidia/ml and incu-

bated for up to 72 h at 37 �C on a shaker at 320 rpm.

Growth and pH measurement

Growth, pH, and protease activityweremeasured inAf cultures

at 12, 24, 36, 48, and 72 h postinoculation. Rate of growth was

measured as change in dry biomass by collecting 5 ml of liquid

culture at set times and applying to a predried filter, washing

withdH2Oat 90 �C thendryingat 110 �C for 72hand reweighing.

To analyse pH, 10ml of liquid culturewere collected and fungal

biomass removed by filtration through a sterile J cloth and

remaining supernatant sterilised by filtration using a 0.22 mm

Corning CA Vacuum filter system and pHmeasured.

Protease assays

The change in the level of protease activity in culture superna-

tant over 72 h was assessed in sterilized filtered supernatant
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using a resorufin-labelled casein assay according to themanu-

facturer’s instructions (Roche Life Sciences, Welwyn, UK). The

change in absorbance at 574 nm compared to a PBS blank was

assessed using a microplate specrophotometer. For the calcu-

lation of rate of resorufin-labelled casein hydrolysis, superna-

tant from 48 h cultures was diluted to give a linear increase in

absorbance over 60 min at 37 �C. Rate of change of absorbance

was measured using linear regression and the protease activ-

ity calculated in International Units of protease activity per

millilitre of enzyme solution (IU ml�1). One IU is defined as

the amount of time inminutes taken to degrade 1 mmol of sub-

strate. Protease activity in IU ml�1 was calculated using the

BeereLambert equation using an extinction coefficient of

66 000 L mol�1 cm�1 for resorufin-labelled casein and normal-

ized against dry biomass.

To characterize the class of protease activity present in cul-

ture supernatant, protease inhibitors were added to give final

concentrations as follows: 2 mM PMSF (serine protease inhib-

itor; Sigma), 5 mM EDTA (metalloprotease inhibitor; Sigma),

10 mM E64 (cysteine protease inhibitor; Sigma), 25 mM Iloma-

stat (matrix metalloprotease inhibitor; Merck, Nottingham,

UK) or 50 mM Pepstatin A (aspartic protease inhibitor, Merck,

Nottingham, UK). Culture supernatants were preincubated

with protease inhibitor for 30 min at room temperature prior

to performing the assay. Culture supernatants treated with

vehicle alone acted as negative controls.

Size exclusion chromatography and SDS-PAGE

Culture supernatants were dialysed overnight at 4 �C against

filter sterilised dH2O to remove low weight compounds using

10 kDa M.W.C.O snakeskin pleated dialysis tubing (Thermo

Fisher Scientific, Basingstoke, UK). Dialysed supernatants

were freeze-dried and stored at�20 �C until use. Supernatants

were separated by size exclusion chromatography using

a 24 ml Superdex S-200 column (GE Life Sciences, Little Chal-

font, UK) in filter sterilised PBS (pH 7.4) at 0.5mlmin�1 and col-

umn flow through divided into 1 ml fractions using an

AKTAPrime protein purification system (GE Life Sciences). Re-

sults were stored and viewed using PrimeView software and

analysed using PrimeView Evaluate (GE Life Sciences).

Selected column fractionswere concentrated usingCorning

5 kDa M.W.C.O centrifugal concentration columns (Thermo

Fisher Scientific) and samples (5 ml) run on 10 % Novex NuPage

Bis-Tris Mini-gels in a MOPs Buffer system according to the

manufacturer’s instructions (Invitrogen, Life Technologies,

Paisley, UK). Gels were stained using either Coomassie Brilliant

Blue or silver nitrate staining according to the manufacturer’s

instructions (Bio-Rad, Hemel Hempstead, UK).

Protein identification

For protein identification by mass spectrometry (MS), bands of

interest were excised from the gel and dehydrated using aceto-

nitrile followedbyvacuumcentrifugation.Driedgelpieceswere

reducedwith10mMdithiothreitol, alkylatedwith55mMiodoa-

cetamide, and then washed twice, alternately with 25mM am-

monium bicarbonate followed by acetonitrile, before drying by

vacuum centrifugation. Samples were digested with trypsin

overnight at 37 �C and then peptides extracted in one wash of
20 mM ammonium bicarbonate, and two of 50 % acetonitrile:

5 % formic acid. Tryptic peptides were dried by vacuum centri-

fuge to 20 ml and then analysed by LC-MS/MS using anUltimate

3000 (LC-Packings, Dionex, Amsterdam, The Netherlands) cou-

pledtoanHCTUltra iontrapmassspectrometer (BrukerDalton-

ics, Bremen, Germany). In brief, peptideswere concentrated on

a precolumn (5 mm � 300 mm i.d, LC-Packings) and then sepa-

rated using a gradient from 98 % A (0.1 % FA in water) and 1 %

B (0.1 % FA in acetonitrile) to 50 % B, in 40 min at 200 nLmin�1,

using a C18 PepMap column (150 mm � 75 mm i.d, LC-

Packings). Data produced was searched using Mascot (Matrix

Science, London, UK), against the SwissProt database and the

UniProt database with taxonomy of fungi selected. Data was

validated using Scaffold (Proteome Software, Portland, OR).

RNA extraction and semiquantitative PCR

RNA from 48 h cultures was extracted using a FastRNA ProRed

SPIN Kit (MP Biomedicals, Cambridge, UK). In brief, approxi-

mately 100mg of fungalmaterial was lysed using RNA Pro solu-

tion inLysingMatrixC for 2�40s inaFastPrep-24 instrument for

2� 40 sat 4ms�1with therest of theprotocol performedaccord-

ing to themanufacturer’s instructions. Eluted RNAwas purified

further using on column DNase digestion as part of the RNeasy

RNA extraction kit (Qiagen, Crawley, UK). Quantitative real-

time PCR using the Brilliant II SYBR Green QRT-PCR Master

Mix, 1-Step Kit (Agilent Technologies, Wokingham, UK) was

used to quantify the expression of allergen proteases, Mep,

Alp1, and Lap1, relative to the housekeeping gene, b-tubulin, as

described previously (Fraczek et al. 2010). Briefly, 25 ml reactions

composed of 1� Brilliant II SYBR Green QRT-PCR Mix, 1 mM of

each forward and reverse primer, RT/RNase block enzymemix-

ture, and 100 ng of total RNAwere cycled in a DNA Engine Opti-

con thermocycler (Bio Rad) using the following reaction

conditions, 1 h at 50 �C, followed by 40 cycles of 94 �C for 15 s,

52 �C for 30 s, and 72 �C for 75 s. Fluorescence was read at 52 �C
three times ineachcycle. Inordertoreducebackgroundfrompo-

tential DNA contamination primers were designed so that at

leastoneof theprimersequencesspannedanexon/exonbound-

ary (indicated by *). The following primer pairs were used: Mep/

Asp f 5 (AFUA_8G07080), sense (TACTCACGGTC*TTTCCAACC-

GAC), antisense (GCTTCAGACGGATGGCCGTC), Alp/Asp f 13

(AFUA_4G11800), sense (GAGCGCAGAC*GTTGCCCATG), anti-

sense (CCTTGTGGGAAATGCTGCCCAG), Lap 1 (AFUA_3G00650),

sense (AGCCCCGAGTTCATCCGA*AAGTC), antisense (GGCGT

TTACGTGGGGCTGT).

Statistical analysis

All statistical analysis was carried out using GraphPad Prism

for Mac version 5.0b (GraphPad Software Inc, San Diego, USA).

Results

Growth of Aspergillus fumigatus on different protein
substrates

Initial studies investigated the rate of growth of Af in Vogel’s

medium, caseinmedium, pig lungmedium, ormucinmedium
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to determine whether different substrates regulate growth.

The growth rate of Af was assayed by measuring dry biomass

at 12, 24, 36, 48, and 72 h. The lag phase was similar in all cul-

tures with little observable Af growth between 0 and 12 h

(Fig 1A). Af exhibited similar growth characteristics in Vogel’s

medium and casein medium, with the only significant differ-

ence in growth seen at 24 h (P < 0.05). Af was found to grow

more slowly in pig lung and mucin media compared to both

casein and Vogel’s media, with significantly lower levels of

dry biomass at 36, 48, and 72 h (P < 0.05; Fig 1A). Maximum
Fig 1 e Protease activity during growth of A. fumigatus on

different protein substrates. (A) Accumulation of dry bio-

mass as an indication of Af growth, (B) change in pH, and

(C) the level of protease activity was assessed in the four

different A. fumigatus cultures over 72 h. Data represents

mean ± SD and was analysed by two-way ANOVA with

Bonferroni posttests (n [ 3 biological replicates).
growth in Vogel’s, casein, and pig lung media occurred be-

tween 36 and 48 h, however, in mucin medium, maximum

growth occurred at 24 h.

In previous studies the pH of Af growth medium has been

shown to change during growth and has been shown to be im-

portant in determining which proteases are secreted as well

their stability and activity. In all cultures containing protein

as the sole carbon and nitrogen source, pH of the growth me-

dium gradually increased from around pH 6.0 to pH 8.0 during

Af growth over 72 h (Fig 1B). In Vogel’s minimal medium, the

pH dropped between 0 and 24 h before beginning to increase.

Casein and pig lung cultures exhibited a significantly higher

pH than Vogel’s minimal medium cultures between 36 and

72 h (P < 0.05), whilst mucin culture showed significantly

higher pH between 12 and 72 h (P< 0.05). Therewere no signif-

icant differences between pH in mucin and pig lung cultures

over time.

Effect of different protein substrates on protease secretion by
Aspergillus fumigatus

The induction of protease secretion over time by Af due to dif-

ferent culture media was assayed using a universal protease

substrate at 0, 12, 24, 36, 48, and 72 h postinoculation. In super-

natant from Af cultured in Vogel’s minimal medium an in-

crease in protease activity was observable but this was small

compared with increases in protease activity in casein, pig

lung, and mucin cultures. In supernatants from Af cultured

in casein and pig lung media, protease activity increased

over time and peaked at 48 h, whilst protease activity peaked

at 24 h in mucin medium (Fig 1C). Protease activity in pig lung

culture supernatants appeared earlier than in casein superna-

tants and was significantly higher at all time points. The

changes in protease levels in casein, pig lung, and mucin cul-

ture supernatants tracked the growth of Af, with maximum

protease levels detected at maximum growth in both pig

lung and mucin cultures. Protease activity was not observed

in uninoculated control culture media at any time point

(data not shown).

In order to accurately quantify the levels of secreted prote-

ase activity, 48-h Af culture supernatants were diluted until

a linear change in resorufin-labelled casein hydrolysis was ob-

served by measuring absorbance at 574 nm over 60 min. Re-

sults were normalised against dry biomass to account for

variations in protease amount due to differences in growth

rate. Protease activity in pig lung culture supernatants was

found to be greatest compared with mucin cultures (z2 fold

difference), casein cultures (z300 fold difference), and Vogel’s

cultures (z1000 fold difference, Fig 2A). This suggested that

some media were more potent inducers of protease secretion

than others; however the secretion of different proteases may

lead to variation in the activity of secreted proteases.

To characterise the class of proteases secreted byAf during

growth on different protease substrates, protease inhibitors

were used to inhibit specific classes of protease and the prote-

ase activity measured. In all culture supernatants, E64 (cyste-

ine protease inhibitor) and Pepstatin A (aspartic protease

inhibitor) were not found to cause significant changes in pro-

tease activity (data not shown). Protease activity in casein cul-

ture supernatant was found to be inhibited predominantly by



Fig 2 e Characterisation of protease activity present in 48 h

A. fumigatus cultures containing different protein sub-

strates. (A) Rate of protease activity was determined in cul-

ture supernatant from 48 h cultures of A. fumigatus.

Protease activity was normalised against dry biomass to

account for differences in growth rate. (B) Inhibition of pro-

tease activity in culture supernatant from 48 h cultures of

A. fumigatus. Percentage change in activity with inhibitor

was relative to uninhibited control supernatant set at 100 %

for each culture. Data represents means ± SD and was

analysed by t-test, compared to Vogel’s medium (n [ 3

biological repeats).
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EDTA (11 % activity of uninhibited control), suggesting that

metalloproteases were responsible for the majority of the ob-

served protease activity (Fig 2B). Conversely protease activity

in pig lung culture supernatant was mainly inhibited by

PMSF alone (17 % activity of uninhibited control), suggesting

that serine proteases are dominant within this culture super-

natant. Inmucin culture supernatant, proteaseswere partially

inhibited by both EDTA and PMSF (35% and 15% activity of un-

inhibited control respectively), suggesting that both matrix

metalloproteases and serine proteases were secreted.

Taken together these results suggest that the use of differ-

ent protein substrates as the sole carbon and nitrogen source

in culturemedium affects both the growth of Af and the levels
of protease activity observed in culture supernatants. It also

appears to affect the class of protease activity present within

the culture supernatant suggesting that different proteases

are secreted or activated in culture supernatants in response

to growth on different media.

Identification of proteases secreted by Af during growth on
different protein substrates

In order to analyse differences in protease secretion profiles of

Af on different substrates, 48-h culture supernatants were

analysed by size exclusion chromatography (Fig 3A). To iden-

tify the fractions containing protease activity, each 1 ml sam-

ple was assayed using resorufin-linked casein assay. Protease

activity was detected in fractions 17 and 18 in casein culture

supernatant, fractions 17e20 in pig lung culture supernatant,

and fractions 16e20 in mucin culture supernatant (Fig 3B). To

analyse the proteins present in proteolytically active frac-

tions, samples were concentrated, proteins separated by

SDS-PAGE and individual bands selected for identification by

LC-MS/MS (Fig 3C and Table 1).

Comparing casein, pig lung, and mucin active fractions,

several proteins were found to be common to both, including,

b-D-glucoside glucohydrolase, Mannosidase MsdS, FAD-

dependent oxygenase, and Cell wall b-1,3-endoglucanase

(Table 1). These enzymes may be associated with cell wall

modification and remodelling during growth and are expected

during fungal growth in vitro.

Af was found to secrete different proteases dependent on

the protein substrate present in the culture medium. Growth

of Af in casein medium resulted in the secretion of the metal-

loproteases, aminopeptidase Y (Lap 1, Q5VJG5), and elastino-

lytic metalloprotease (Mep/Asp f 5, P46075) as suggested by

inhibitor studies however the alkaline serine protease (Alp1/

Asp f 13, P28296) was also present. Conversely, growth in pig

lung medium resulted in the secretion of Alp1 as suggested

by inhibitor studies but also Mep was detected, whilst growth

inmucinmedium resulted in the secretion of Alp1 but neither

of the metalloproteases which was unexpected from inhibitor

studies. These results again clearly demonstrate separate pro-

tease secretion profiles determined by different culture

substrates.

Gene expression of proteases by Af grown on different protein
substrates

Gene expression of the proteases identified by LC-MS/MS was

determined using qPCR at 48 h postinoculation in casein, pig

lung, and mucin media and compared with Vogel’s medium

where no protease activity was detected. In casein cultures,

Lap 1 expression was found to be significantly upregulated

compared with Mep and Alp1 (Fig 4; P < 0.01). In pig lung cul-

tures, both Mep and Alp1 gene expressions were found to be

upregulated compared with Lap 1 whereas in mucin medium,

only Alp 1 gene expression was found to be upregulated com-

pared with Mep and Lap 1.

In pig lung and mucin cultures, gene expression of prote-

ases (Alp 1 and Mep) correlated well with the protein detected

in culture supernatant by mass spectrometry. However in ca-

sein cultures, Lap 1 appeared to be the only protease to show



Fig 3 e Identification of proteases secreted by A. fumigatus in response to different protein substrates. (A) Equal volumes of

filtered and dialysed culture supernatant was subjected to size exclusion chromatography and protein levels measured

continuously by UV absorbance at 280 nm. (B) Fractions collected at 1 ml intervals were analysed for protease activity.

(C) SDS-PAGE of proteolytically active fractions showing bands analysed for protein identification by LC-MS/MS (see Table 1).
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upregulated expression at 48 h whereas all three proteases

(Alp 1, Mep, and Lap 1) could be detected in casein culture su-

pernatant by mass spectrometry suggesting different regula-

tory mechanisms in the secretion of the proteases and

regulation of gene expression. Furthermore, metalloprotease

activity was demonstrated in mucin culture supernatant us-

ing inhibitors however only the serine protease, Alp 1 was

shown to be upregulated and its protein detected by mass

spectrometry suggesting that another MMP distinct from Lap

1 and Mep may be secreted and identified as an uncharacter-

ized protein by mass spectrometry produced at low levels.
Discussion

As saprotrophs, the ability of fungi to regulate and produce

suitable enzymes to digest complex protein substrates in the

environment is essential for successful colonisation of their

surroundings (Denning et al. 2006). Furthermore, the mecha-

nisms controlling the secretion of proteases by Aspergillus

fumigatus are of particular interest, as proteases from Af and

other Aspergillus species have been suggested to be involved

in the development of allergic diseases such as SAFS and

ABPA (Denning et al. 2006). Previous studies have suggested

that the secretion of proteases by Af is regulated in response

to pH and the availability of primary nitrogen sources
(Bergmann et al. 2009; Sriranganadane et al. 2010) and that

growth on a variety of protein only substrates including, se-

rum and BSA (Gifford et al. 2002), collagen (Monod et al.

1993), elastin (Frosco et al. 1992), and fibrinogen (Larcher

et al. 1992), results in the secretion of both serine andmetallo-

proteases. In this current study, we aimed to investigate the

effect of different protein substrates on the secretion of prote-

ases by Af.

Results demonstrated that different protein substrates

resulted in significantly different levels of protease secretion

byAf. In particular, mucin and pig lung homogenate have a di-

rect relevance to the type of physiological substrates that the

fungus would encounter following inhalation. Furthermore,

results also showed the differential secretion of three prote-

ases, Alp 1, Mep, and Lap 1 byAf in response to changes in pro-

tein substrate explaining the dominance of different classes of

protease activity in Af culture supernatants. Growth on casein

medium, used as an alternative standard protein substrate,

resulted in culture supernatants dominated by MMP activity

and analysis of culture supernatants by LC-MS/MS revealed

the presence of metalloproteases, Lap 1, and Mep. The serine

protease, Alp 1, was also shown to be present in the culture

supernatant by LC-MS/MS; however, there appeared to be lit-

tle detectable serine protease activity present following addi-

tion of serine protease inhibitors. This suggests that Alp 1may

not have been secreted in sufficient quantities to be detected



Table 1 e Proteins identified by LC-MS/MS in A. fumigatus culture supernatants. The SDS-PAGE bands are shown in Fig 3C
and the number of peptide matches for each protein is shown. A confident match was considered to be any protein with
three or more matched peptides. Proteases are highlighted in bold. Protein molecular weights are quoted from UniProt for
protein translated from the full ORF.

Identified proteins Molecular
weight (kDa)

CADRE accession
number

UniProt accession
number

Protein matches (band and
number of matched peptides)

Casein
medium

Pig lung
medium

Mucin
medium

Exo- b �1,3-glucanase 84 AFUA_6G13270 Q4WLJ9 e L (3) e

b-D-glucoside glucohydrolase 78 AFUA_7G06140 Q4WGT3 A (18) L (12) T (5)

V (3)

Aminopeptidase Y (Lap 1) 54 AFUA_3G00650 Q5VJG5 B (13)

C (6)

D (5)

e e

Mannosidase MsdS 54 AFUA_1G14560 Q6PWQ1 C (14) M (14) U (8)

FAD-dependent oxygenase 55 AFUA_3G00840 Q4WFW0 C (11) M (9) U (7)

Oxidoreductase, FAD-binding 50 AFUA_2G14480 Q4X072 C (4) M (4) e

Uncharacterised protein 49 AFUA_4G03200 Q4W9Z5 D (12) N (10) e

Glucooligosaccharide oxidase 51 AFUA_6G14340 Q4WL94 D (5) e e

Elastinolytic metalloproteinase

(Mep/Asp f 5)

69 AFUA_8G07080 P46075 E (5) N (5) e

Cell wall b-1,3-endoglucanase 45 AFUA_3G00270 Q4WG16 F (7) O (4) V (4)

Class V chitinase 46 AFUA_3G07160 A4D9F7 F (3) N (6) e

Uncharacterised protein 37 AFUA_5G01120 Q4WDY6 F (4) e e

Uncharacterised protein 37 AFUA_8G00630 Q4WB08 e P (5) e

Alkaline serine protease

(Alp1/Asp f 13)

42 AFUA_4G11800 P28296 G (8)

H (4)

P (6)

Q (3)

S (5)

V (5)

W (5)

X (3)

Y (3)

Chitosanase 25 AFUA_4G01290 Q875I9 H (9) e e

Uncharacterised protein 33 AFUA_5G10930 Q4WV60 H (4) e e

Cell wall protein PhiA 19 AFUA_3G03060 Q4WF87 I (3)

J (3)

e e

Cell wall protein 19 AFUA_3G01130 Q4WFT1 K (12) R (8) X (9)

Cu/Zn Superoxide Dismutase 16 AFUA_5G09240 Q9Y8D9 K (4) e e

Allergen Asp f 15 16 AFUA_2G12630 O60022 e e X (3)

Secreted antimicrobial peptide 10 AFUA_8G00710 Q4WB16 e e Y (3)

Expression and secretion of A. fumigatus proteases 1009
in protease assays, or that the secreted Alp 1 was inactive.

Analysis of Lap 1, Alp 1, and Mep transcription by qPCR

revealed that Lap 1 was strongly upregulated compared with

Alp 1 and Mep, which were both downregulated. Taken to-

gether these results suggest that casein medium caused the

transcriptional upregulation of Lap 1 resulting in a culture su-

pernatant dominated by metalloprotease activity. The pres-

ence of Mep and Alp 1 in the supernatant, despite

downregulation of expression, may be due to temporal regula-

tion of their transcription, and it is possible that they may

have been expressed prior to sampling at 48 h.

In contrast, growth in pig lung medium resulted in cul-

ture supernatant dominated by serine protease activity as

shown by inhibitor studies. Analysis of protease containing

fractions of pig lung culture supernatant by LC-MS/MS, dem-

onstrated the presence of both Alp 1 and Mep, whilst analy-

sis of gene transcription showed that transcription of Alp 1

was strongly upregulated at 48 h. Taken together, these re-

sults suggest that the serine protease, Alp 1, is strongly upre-

gulated during growth in pig lung medium and is responsible

for the serine protease activity observed in these cultures.

The presence of Mep in culture supernatants by LC-MS/MS

without detectable metalloprotease activity may again be

because Mep was not secreted in sufficient quantities to be
detected in the protease assay, or that the secreted Mep

was in an inactivate form.

Analysis of mucin cultures, with addition of protease in-

hibitors, revealed that protease activity was due to both met-

alloproteases and serine proteases. However, detection of

proteases by LC-MS/MS only revealed the presence of the ser-

ine protease, Alp 1. Furthermore, analysis of transcription

revealed that only Alp 1 was significantly upregulated. To-

gether these results suggest that Alp 1 was the main protease

responsible for the serine protease activity detected in mucin

culture supernatant. The metalloprotease activity that was

found to be present by inhibitor studies was not detected as

Mep or Lap 1 by LC-MS/MS and transcription of these prote-

ases was not upregulated at 48 h. This may indicate the pres-

ence of novel proteaseswithMMP activity that still needs to be

isolated and identified inmucin culture supernatant. The deg-

radation of mucins by Af has been reported previously (St

Leger & Screen 2000), however, the proteases involved were

only identified by their catalytic activity and suggested to be-

long to the aminopeptidase, subtilisin, and trypsin-like prote-

ase families. Taking the study as a whole, the results obtained

for the different experiments are partly inconsistent. For in-

stance, results suggest that in casein and pig lung culture su-

pernatants, Alp1 and Mep, respectively, were found to be



Fig 4 e Protease gene expression in A. fumigatus cultures in

response to different protein substrates. Protease gene ex-

pression was assayed by qPCR and expression of Mep, Alp

1, and Lap 1 was normalised against b-tubulin. Differences

in gene expression in protein containing media compared

with control Vogel’s minimal medium were calculated us-

ing 2DDct. Data represents means ± SD (n [ 3 biological

repeats) and was anaylsed by both one- and two-way

ANOVA.

1010 E. Farnell et al.
present bymass spectrometry, but were not found to be active

during inhibitor studies. The presence of protease without ac-

tivity suggests that proteaseswere either, secreted in different

amounts in the supernatant, not activated following secre-

tion, or inactivated or inhibited in the supernatant. Given

the presence of propeptide domains present in both Mep

and Alp1, it is possible that proteases may have been secreted

into the culture supernatant but not activated. However in

both cases the proteins present in the supernatants had

a much lower molecular weight than those of the full transla-

tion of the open reading frame (ORF) of the protein, which im-

plies posttranslational modifications involving cleavage of the

propeptide/chaperone domain had already occurred. Alterna-

tively, proteinsmay have been inactivated posttranslationally

due to cleavage by other proteases in the cell cytoplasm, dur-

ing secretion or in the culture supernatant. In casein and pig

lung culture supernatants, the fragmentation patterns of

Alp1 were slightly different. Both supernatants contained

a 30 kDa Alp1 protein fragment however in casein culture su-

pernatants only a 28 kDa fragment was present, whilst pig

lung culture supernatants contained 25 kDa and 7 kDa frag-

ments. It may be possible that differential cleavage or degra-

dation of the Alp130 kDa fragment resulted in active and

inactive forms of the protease. Finally Af has been shown to

secrete an elastase inhibitor, AFUEI (AFUB 034300), which

strongly inhibits Af elastinolytic activity (Okumura et al.

2008). This inhibitor may be secreted by Af under certain

growth conditions and bind selectively to Alp1 resulting in

inhibition.

Regulation of the production of protease Afmay have been

due to differences in transcription of the protease genes. In

the current study, levels of allergen protease mRNA were
measured by qPCR, giving an indication of the levels of gene

transcription. However, posttranscriptional and posttransla-

tional events may have resulted in different levels of protein

secretion. Measurement of the baseline levels of Mep and

Alp1 mRNA indicated that expression of these genes was sig-

nificantly lower than the housekeeping gene b-tubulin. This

matched the results of Fraczek et al. (2010) where levels of

Mep and Alp1mRNAwere also found to be considerably lower

than b-tubulin. Taken together with the data for protease ac-

tivity in culture supernatants, results from this study suggest

that the levels of Mep, Alp1, and Lap1 found in culture super-

natants may be regulated at the transcriptional level. Possible

mechanisms for the secretion and regulation of protease ac-

tivity within A. fumigatus culture supernatants have been pro-

posed. For instance, evidence suggests that several proteases,

includingMep and Alp1 are regulated by the transcription fac-

tor prtT (Bergmann et al. 2009; Sharon et al. 2009), potentially

through the control of the CpcC eIF2a sensor kinase, which de-

tects environmental stresses such as amino acid depletion

(Krappmann & Braus 2005). Results from this study suggest

that Mep and Alp1were coregulated by the same transcription

factor, but a novel result suggests that Lap1 was regulated by

a separate transcription factor, as levels of Lap1 expression in

casein cultures appeared to be increased relative to Mep and

Alp1. It is also possible that transcription may have not

resulted in translation, and therefore measurement of Mep,

Alp1, and Lap1 levels in the culture supernatants would con-

firm the results shown by qPCR.

Bioinformatic studies suggest that the Af genome encodes

over 100 proteases and 26 nonpeptidase homologues of which

between 47 are predicted to be secreted extracellularly

(Watson et al. 2011). Although the current results are similar

to those shown in other studies where Mep, Lap 1, and Alp 1,

were shown to be secreted by Af during growth on lung struc-

tural components including, collagen and elastin (Frosco et al.

1992; Kolattukudy et al. 1993; Monod et al. 1993; Wartenberg

et al. 2011), additional proteases have also been detected in-

cluding aspartic protease (pep1), sedolisins (SedA-D), aegero-

lysins (Asp-haemolysin), and dipeptidyl peptidases (Dpp IV

andV). There are a number of reasonswhy someof these other

proteases were not detected in the current study. Firstly, the

pH of the culture media may not be inductive to the secretion

of some proteases. For instances, Sedolisins are active under

acidic conditions (Reichard et al. 2006) whereas the pH of the

Af cultures in the present study became more alkaline over

time. Another reason may be due to the method used to iden-

tify proteases in the current study, in the sense that it only

identified protease activity capable of cleaving the resorufin-

labelled casein substrate used in the protease assay and only

fractions that showed degradation of this substrate were ana-

lysed further by LC-MS/MS. Therefore, some types of secreted

proteases that have been identified in Af culture supernatant

under neutral pH conditions by others, such as the exopepti-

dase Dpp V (Neustadt et al. 2009; Singh et al. 2010;

Wartenberg et al. 2011) may not be detected as they may

have been in fractions that were not analysed which is a limi-

tation of this study. A previous study by Sriranganadane et al.

(2010) used a shotgunmass spectrometrymethodwhich iden-

tified all proteins present in the Af culture supernatants with-

out the need to first identify proteolytically active fractions
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and allowed for somequantification of the amount of protease

present. Neustadt et al. (2009) characterized and identified se-

creted proteases inAf culture supernatant using free flowelec-

trophoresis with protease activity in each fraction assayed

using specific fluorescently labelled reporter peptides. Frac-

tions with high protease activity were further subjected to

LC-MS/MS analysis for protease identification and showed

that mainly metalloproteases and serine proteases are in-

volved in the degradation of reporter peptides although no

quantitative profilewas described. The use of these alternative

proteomic profiling techniques in future studiesmight be used

to identify all of the proteases present in supernatants from

complex protein substrate cultures. Furthermore, the develop-

ment of specific antibodies against these proteases will

enable protein levels in culture supernatants to be more

accurately quantified by western blot or ELISA.

It has been suggested that proteases from Af, specifically

the allergen proteases Mep and Alp 1, might be involved in

the development of allergy either directly via the protease de-

pendent release of proinflammatory cytokines (Borger et al.

1999; Kauffman et al. 2000) or indirectly as adjuvants causing

sensitisation to other allergens (Kurup et al. 2002). In this con-

text, a pathway that suppresses the expression of certain pro-

teases may be a potential target for future drug therapies

thereby reducing lung inflammation during exposure and col-

onisation of the lungs in individuals with SAFS and ABPA. Fur-

thermore, if Af proteases are important in the development of

allergy and inflammation, the results of this study suggest that

Af extracts used in both clinical diagnostics and research stud-

ies should be accurately defined and fully characterised. A re-

port by Esch (2004) showed that there was large amounts of

variation in the protein and carbohydrate composition of com-

mercially available Alternaria alternata extract. A further study

by Aas et al. (1980) found that different preparations of fungal

allergens, from the same species of fungi, including Aspergil-

lus, provided by different manufacturers were found to elicit

different skin test results in the same patient. Findings from

these studies and the results from this current study suggest

a clear need for the standardization of the preparation of pro-

tease containing allergen extracts from Af and other fungi.
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