EUCAST Technical note on Amphotericin B

C. Lass-Floërl¹, M. C. Arendrup², J.-L. Rodriguez-Tudela³, M. Cuenca-Estrella³, P. Donnelly⁴, W. Hope⁵ and The European Committee on Antimicrobial Susceptibility Testing – Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST)*

¹) Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria, 2) Unit of Mycology, Department of Mictobiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark, 3) Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain, 4) Department of Haematology, Radboud University Nijmegen Medical Centre & Nijmegen University Centre for Infectious Diseases Radboud University, Nijmegen, The Netherlands and 5) The University of Manchester, Manchester, UK

Abstract

The European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) has determined breakpoints for amphotericin B for Candida spp. This Technical Note is based on the EUCAST amphotericin B rationale document (available on the EUCAST website: http://www.eucast.org). The rationale document includes more detail and published references related to the selection of EUCAST-AFST breakpoints (http://www.srga.org/eucastwt/MICTAB/EUCAST%20clinical%20MIC%20breakpoints%20-%20antimicrobials%20for%20Candida%20infections.htm).

The breakpoints are based upon pharmacokinetic data, epidemiological cut-off values and clinical experience. Breakpoints will be reviewed regularly.

Keywords: Amphotericin B, breakpoints, EUCAST technical note, susceptibility testing

Original Submission: 8 June 2011; Revised Submission: 28 July 2011; Accepted: 28 July 2011

Editor: E. Roilides

Article published online: 4 August 2011

Clin Microbiol Infect 2011; 17: E27–E29

10.1111/j.1469-0691.2011.03644.x

Introduction

Amphotericin B is a polynene antifungal agent that is active against yeasts and moulds. In Europe, it is available in four different parental formulations, including amphotericin B deoxycholate and three lipid formulations. The active compound is identical but the pharmacokinetics and toxicity profiles vary from formulation to formulation. The licensed indications for each formulation are as follows: amphotericin B deoxycholate (AMB-DC), serious infections due to amphotericin B-susceptible fungi; amphotericin B lipid complex (ABLC), first-line treatment of systemic Candida infections; amphotericin B colloidal dispersion (ABCD), serious infections due to amphotericin-susceptible fungi, where amphotericin B deoxycholate is contraindicated or has failed; liposomal amphotericin B (L-AMPHOTERICIN B), treatment of invasive fungal infections due to amphotericin B-susceptible fungi, and treatment of suspected fungal infection in neutropenic patients with persistent fever despite antibacterial treatment for 5–7 days.

The European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST) has determined breakpoints of amphotericin B for Candida spp. This Technical Note is based on the EUCAST amphotericin B rationale document (available on the EUCAST website: http://www.eucast.org). The rationale document includes more detail and published references related to the selection of EUCAST-AFST breakpoints (http://www.srga.org/eucastwt/MICTAB/EUCAST%20clinical%20MIC%20breakpoints%20-%20antimicrobials%20for%20Candida%20infections.htm).

The breakpoints are based upon the following dosages administered intravenously: amphotericin B, 0.6–1 mg/kg/day; liposomal amphotericin B lipid complex (ABLC) and amphotericin B colloidal dispersion (ABCD), 3–5 mg/kg/day. Breakpoints were established using MIC values from multiple laboratories. Wild-type isolates of each of the five common species (C. albicans,
TABLE 1. EUCAST MIC breakpoints for amphotericin B

<table>
<thead>
<tr>
<th>Species</th>
<th>Species-related breakpoints (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>S ≤ 1</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>S ≤ 1</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>S ≤ 1</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>S ≤ 1</td>
</tr>
<tr>
<td>C. krusei</td>
<td>R > 1</td>
</tr>
</tbody>
</table>

The clinical response of infection due to Candida species as a whole was similar to that of infections caused by C. albicans, C. parapsilosis and C. tropicalis. However, there were only 12 cases available for analysis, which is too few to allow any recommendation to be made. Therefore, there is insufficient evidence to set clinical breakpoints for other species of Candida.

C. glabrata, C. krusei, C. parapsilosis and C. tropicalis exhibit MICs ≤ 1 mg/L.

The EUCAST breakpoints (Table 1) are based on pharmacokinetic [1–7] and microbiological data and clinical experience [8–15]. For most studies clinical outcome data were not specified for the individual Candida species. Combining the studies that provided such data [8,12,14], failure rates were as follows. For L-amphotericin B the overall failure rate was 4% (2/45), for C. albicans 11% (7/73), C. tropicalis 4% (2/45), C. parapsilosis 10% (3/29), C. glabrata 20% (3/15) and C. krusei 20% (1/5). For amphotericin B deoxycholate the overall failure rate was 38% (44/115) and for individual species: C. albicans 8% and C. krusei 3%. These data indicate that the five commonest species are good targets for all amphotericin B formulations. There are too few data to enable any definitive recommendation to be made for species other than those addressed in this document. None of the clinical studies estimated MICs using EUCAST methodology so a direct correlation between in vitro MICs and clinical outcome is currently not possible. Furthermore, there is no clinical experience with isolates with acquired resistance mechanisms; hence the breakpoints are based upon epidemiological cut-off values.

Transparency Declaration

The authors do not have any potential conflicts of interests related particularly to this paper. Otherwise, MCA has received research grants and acted as speaker for Astellas, Gilead, MSD and Pfizer, and been a consultant for Gilead, MSD and Pcovery. JLR/T has received grant support from Astellas Pharma, Gilead Sciences, Merck Sharp and Dohme, Mycognostica, Pfizer and Schering Plough. He has been paid for talks on behalf of Gilead Sciences, Merck Sharp and Dohme, Pfizer, and Schering Plough. CLF has research grants, consultant and/or speakers bureau, for Pfizer, Astellas, Gilead and Merck. MCE has received grant support from Astellas Pharma, bioMerieux, Gilead Sciences, Merck Sharp and Dohme, Pfizer, Schering Plough, Soria Melguizo SA, the European Union, the ALBAN program, the Spanish Agency for International Cooperation, the Spanish Ministry of Culture and Education, The Spanish Health Research Fund, The Instituto de Salud Carlos III, The Ramon Areces Foundation and The Mutua Madrileña Foundation. He has been an advisor/consultant to the Panamerican Health Organization, Gilead Sciences, Merck Sharp and Dohme, Pfizer and Schering Plough. He has been paid for talks on behalf of Gilead Sciences, Merck Sharp and Dohme, Pfizer and Schering Plough. PD has been a consultant for Astellas, Gilead, Merck, Pfizer, received research grants from Pfizer and is on the speakers bureau for Gilead, Merck and Pfizer. WW/H has received research grants, consultant and/or speakers bureau, for Pfizer, Astellas, Gilead, Merck, Vectura and F2G.

References

4. Gubbins PO, Amsden JR, McConnell SA, Anaissie EJ. Pharmacokinetics and buccal mucosal concentrations of a 15 milligram per kilogram of body weight total dose of liposomal amphotericin B administered as a single dose (15 mg/kg), weekly dose (7.5 mg/kg), or daily dose (1 mg/kg) in peripheral stem cell transplant patients. *Antimicrob Agents Chemother* 2009, 53: 3664–3674.

